
HVE-WP-2020-3

Video-based Accident Reconstruction

from Vehicle Camera System

Gregorij Kurillo, Evan Hemingway, Louis Cheng
Applied BioMechanics

Alameda, CA

2020 HVE Forum

Austin, TX

February 24 – 28, 2020

8625 SW Cascade Avenue, Suite 200, Beaverton, OR 97008, USA Tel: 888.768.6216 www.edccorp.com

To request permission to reprint a technical paper or permission to use copyrighted

EDC publications in other works, contact EDC

Positions and opinions advanced in this paper are those of the author(s) and not

necessarily those of EDC. The author is solely responsible for the content of the

paper.

Persons wishing to submit papers to be considered for presentation or publication

during an HVE Forum should send the manuscript or a 300 word abstract of a

proposed manuscript to: Training Manager, Engineering Dynamics Corporation.

HVE-WP-2020-3

Video-based Accident Reconstruction
from Vehicle Camera System

Gregorij Kurillo, Evan Hemingway, Louis Cheng

Applied BioMechanics, Alameda, CA

Abstract

Vehicle surveillance camera systems are becoming
prevalent in public transportation as well as private
vehicles. In this paper, we present Video-based
Accident Reconstruction System (VARS), a software
tool developed for the motion analysis of traffic
accidents as captured by vehicle and land surveillance
cameras. Working with the point cloud data of an
accident site, this 3D interactive tool provides frame-to-
frame motion analysis of the vehicle and the location of
objects in the environment (e.g., other vehicles,
pedestrians). Based on an annotation of keyframes in the
video and the point cloud, this software uses
photogrammetry and computer vision techniques to
extract the path and velocity of the vehicle(s) and
surrounding objects of interest. The tool can render
drive-through videos from different vantage points such
as from the vehicle camera, driver’s viewpoint, and
other stationary or moving camera views. Furthermore,
the calculated vehicle motion data can be exported for a
vehicle dynamics analysis in programs such as HVE.
The latter half of this paper provides step by step
illustrations of the path reconstruction process for input
to and use in HVE.

Introduction

Vehicle surveillance camera systems are now
ubiquitous in public transportation and are becoming
prevalent in private vehicles. The video information
recorded by such systems may be accompanied by GPS
data and other telemetry obtained from the vehicle (e.g.,
speed, braking events). In the case of traffic accidents,
the video information is extremely valuable in
determining what happened in the accident and
understanding the possible roles played by surrounding
factors. To gain further insight into what happened, it is
often desirable to visualize and analyze the accident not

only from the viewpoint of the attached camera systems
on the vehicle, but also from other relevant stationary or
moving locations. One of the major challenges in the
video analysis is in mapping the video information into
a 3D simulation. This process can be done manually by
analyzing the video frame-by-frame and matching the
camera view from a simulated vehicle path to the video
camera’s path, although this process may prove to be
tedious and time consuming. While commercial
photogrammetry software is available for video analysis
using footage from stationary surveillance video
cameras, there are currently few, if any, available
products that can facilitate a vehicle path reconstruction
directly from video captured by a moving camera.

In this paper, we present Video-based Accident
Reconstruction System (VARS), a software tool
developed for the motion analysis of traffic accidents
captured by vehicle and land surveillance cameras. The
development of VARS is ongoing, but the functional
features implemented to date have been used
successfully in the analyses of real world accidents. This
paper presents the technical details of the software and
demonstrates its functionality and utility for HVE by
reconstructing a test drive with a GPS-based data
recorder and a real-world accident.

Video-based Accident Reconstruction System
(VARS)

VARS implements photogrammetry and computer
vision techniques to extract the paths of vehicles and
surrounding objects of interest using surveillance video
and point cloud data of the accident site as inputs. The
software features an interactive user interface (UI) that
provides the following functionality:

 frame-by-frame video analysis (currently for a
single view video input)

2

 3D visualization of point cloud data and/or mesh
model of the environment

 registration of camera pose at selected
keyframes

 reconstruction of vehicle path for drive-through
simulation

 rendering of drive-through videos from different
vantage points such as driver’s point of view, top
view and vehicle chase view

 estimation of object pose (e.g., parked vehicles,
traffic cones, moving pedestrians) from video
data

 export of vehicle path and object coordinates for
use in vehicle dynamics simulation software
such as HVE.

Figure 1 shows the main user interface of VARS. The
central window displays the point cloud of the
environment and provides an interactive view of the
scene with a toolbar for quick selection of fixed views.
As will be soon described, the central window is used to
select 3D keypoints for frame registration. The two side
graphics windows feature the current rendered camera
viewpoint (top right) and the current video frame as
captured by the vehicle camera (bottom right). Video

and keyframe controls are provided under the camera
window along with information on the current frame
number and time stamp. The panel on the left side of the
UI, divided into several sections, provides granulated
controls for the data analysis, including: (1) project
information, (2) point cloud controls for setting point
size and lighting, (3) keyframes for managing path
segmentation, (4) path interpolation with export to video
capabilities, (5) target (object) tracking, (6) manual
camera controls, (7) vehicle mesh settings, and (8)
controls for exporting path data.

The software user interface (UI) is built within a Qt
Framework and using the C++ programming language.
Vision processing is supported by the OpenCV (Open
Source Computer Vision) Library [1], while the point
cloud analysis and visualization are implemented using
PCL (Point Cloud Library) [2].

In the remainder of this paper we will present the
processing pipeline for data analysis using the video and
point cloud. We will compare the calculated vehicle
path with a GPS-based data recorder, and analyze the
vehicle dynamics associated with the calculated vehicle
motion using the HVE program.

Figure 1. The user interface of VARS featuring a 3D visualization of an accident site’s point cloud and an interactive video
player.

3

Cameras and Input Video Data

Vehicle video surveillance systems consist of one or
more cameras that are mounted on the vehicle frame.
Different camera models may be used on the same
vehicle, depending on requirements such as size,
mounting location (interior vs. exterior), field of view,
high dynamic range, and night vision. The resolution of
the camera is one of the factors that determines the level
of detail visible in the image. Cameras come in various
resolutions with the most common resolutions being
VGA (640x480 px), 720p HD (1280x720 px), and full
HD (1920x1080 px). Another important factor is the
type of the lens mounted on the camera. The lenses are
typically characterized either by their focal length or
angular field of view. For a given sensor size, the shorter
the focal length, the wider the angular field of view.
Since the sensor size varies across camera models, the
focal length is typically expressed as a 35 mm
equivalent focal length for ease of comparison. Cameras
with wider angular field of view typically exhibit large
geometric distortions of the captured image, which are
most apparent on the edges of the video frame.

In vehicle video surveillance systems, the output of a
camera is typically recorded by a central recording
device which timestamps the acquired video frames and
stores them into persistent memory such as a solid state
drive. Oftentimes these devices also store other
metadata such as vehicle events (braking, signals, door
opening, accelerometer data, and GPS data). In order to
store video data from multiple views across a substantial
time period (e.g., 30 days), the video image may be
reduced in: (1) resolution from its original capture, (2)

quality due to applied video compression, and (3) frame
rate.

When using video data from vehicle video surveillance
systems for photogrammetry and computer vision-based
analyses, all of the above factors should be taken into
consideration.

The Camera Model

The key step to extracting the camera path and other
information from a video sequence is to determine an
accurate calibration of the camera and to register it to
the world space. The digital camera is a very complex
opto-electrical device, but it is often sufficient to
describe its image creation properties by a simplified
geometric model. We use a standard pinhole camera
model (Figure 2) with radial and tangential distortion
correction [3]:

𝑥 =
𝑓 0 𝑐
0 𝑓 𝑐

0 0 1

1
0
0

0
1
0

0
0
1

0
0
0

𝑅 𝑇
0 1

𝑋 . (1)

The model in Eq. 1 is a linear mapping of the 3D scene
point 𝑋 that can be seen by the camera to the projected
image of the point, represented by its pixel coordinates
𝑥 . The linear mapping is represented by the 3×4
projection matrix, 𝑃. The dimensions of the vectors 𝑋
and 𝑥 are 4×1 and 3×1, respectively, as they are
expressed using homogeneous coordinates. The
parameters 𝑓 and 𝑓 are the camera focal lengths (in
pixel units) in the horizontal and vertical directions of
the image while 𝑐 and 𝑐 are the image plane
coordinates of the optical center of the lens (typically
around the center of the image). These four scalar
parameters are considered intrinsic camera parameters
since they are properties specific to a particular camera.
Even for cameras of the same model, the intrinsic
parameters somewhat differ and require some
refinement to find the correct values. The mapping also
depends on the extrinsic camera parameters 𝑅 and 𝑇,
which are the 3×3 orientation matrix and the 3×1
position vector of the camera expressed in the world
coordinates, respectively. In this application, the
coordinate system associated with the point cloud is
chosen as the world coordinate system.

Figure 2. Pinhole camera model geometry.

C

cx

cy

x

y

x2D

X3D

R, T

W

Focal plane

Image plane

Object

Camera system

fx, fy

4

Camera distortion is captured by a nonlinear mapping
from the projected point locations predicted by the
linear mapping of Eq. 1 to their actual recorded location
on the image. A radial distortion is applied to the result
of Eq. 1 using two parameters 𝑘 and 𝑘 as follows:

𝑥 = 𝑥(1 + 𝑘 𝑟 + 𝑘 𝑟),
𝑦 = 𝑦(1 + 𝑘 𝑟 + 𝑘 𝑟).

Here, 𝑥 = 𝑥2𝐷(1), while 𝑦 = 𝑥2𝐷(2) and 𝑥 and 𝑦

are their corrected values. The distance 𝑟 is given by

𝑟 = 𝑥2 + 𝑦2. Following radial distortion, a tangential
distortion may be applied to account for any
misalignment between the image plane and the lens
principal plane. The deformation applied to the image is
described with tangential distortion parameters 𝑝 and
𝑝 as follows:

𝑥 = 𝑥 + (2 + 𝑝 𝑥𝑦 + 𝑝 (𝑟 + 2𝑥)),
𝑦 = 𝑦 + (2 + 𝑝 (𝑟 + 2𝑦) + 2𝑝 𝑥𝑦).

The tangential distortion is typically very small or zero
for high quality vision cameras. To estimate all of the
intrinsic parameters, cameras can be calibrated using a
known target, such as a black and white planar
chessboard target of known dimensions [4]. Based on a
set of captured points, a system of equations
incorporating the camera model from Eq. 1 can be
formed and unknown parameters can be derived.
OpenCV computer vision library includes several
calibration methods that can be used for calibration with
the target.

If it is not possible to collect custom target data, the
camera’s intrinsic parameters can be estimated from the
camera specifications (focal length, sensor size, image
resolution). Using selected scene features from one or
two video frames and their corresponding elements in
the point cloud of the accident scene, a non-linear
optimization can be applied to simultaneously refine and
adjust both the extrinsic and intrinsic parameters. This
process may require an iterative approach where the
initial refined solution can be used as the input to further
optimization.

Camera Pose Estimation

Given the initial intrinsic camera parameters, 3D point
cloud of the scene and a video frame, there is sufficient

information to estimate the camera pose (i.e., the
extrinsic camera parameters given by the matrices 𝑅 and
𝑇) by the 3D-2D mapping between the points
represented by the matrix 𝑃 in Eq. 1. Although machine
learning (ML) techniques could serve to match 3D and
video imagery, this could be a difficult task in accident
reconstruction applications, as the time between the
video data and point cloud acquisition may be months
or years apart. There may be changes in the lighting
conditions, objects may no longer be present (e.g.,
parked cars, road work), the environment may have
significant changes (e.g., grown or trimmed vegetation,
re-building of structures), and there may be occlusions
or missing data in the point cloud. Therefore, manual
point correspondence selection remains the best option
for analysis. In order to limit the amount of manual
interaction, we limit the point matching only to selected
keyframes and then interpolate the results.

In the first step, the user ideally selects between 8 and
12 keypoints in the point cloud window and the video
frame (Figure 3). The keypoints for matching can
include various static landmarks that are visible in both
data sets such as road markings, traffic signals, light
posts and features on neighboring structures. The
selection of keypoints in the video should be distributed
across the video frame while avoiding selection points
situated close to the distorted edges in the keyframe.
Furthermore, the selected keypoints should include
different distance values that are not coplanar or
collinear.

Once the selection is complete, the pose estimation
algorithm determines the camera pose for a given set of
object points, their corresponding image projections,
and the camera intrinsic parameters (Figure 3). The
algorithm finds a pose that minimizes the reprojection
error of 3D points to their 2D counterparts while
rejecting large outliers via the RANSAC procedure [5].

Figure 3. Selected keypoints in the video frame (left) and
corresponding keypoints in the point cloud (right).

5

The reprojection error is defined as the Euclidean
distance between the observed keypoints in the video
frame and the image of the keypoints from the point
cloud, as calculated using Eq. 1.

The determination of camera pose is repeated for each
keyframe in the video sequence. The keyframes should
ideally be selected at constant time intervals. The choice
of time interval between two keyframes depends on the
vehicle speed and the frame rate of the video. For
example, time intervals between 0.5 s and 1.0 s work
well for a video with frame rate of 10 FPS. Additional
keyframes can be introduced to capture important
events, such as the start of a turn, the time of impact and
appearance of an object of interest. Figure 4 compares
a selected keyframe as captured by the camera with the
corresponding reconstructed view using the point cloud.
For accurate comparison, the video frame is undistorted
and overlaid with the rendered 3D view from the
estimated camera pose.

Once the sequence is segmented into keyframes and the
camera pose is determined for each frame, the software
can further optimize both the intrinsic and extrinsic
parameters or the extrinsic parameters only. We use the
Levenberg-Marquardt algorithm [6] to solve the non-
linear least squares problem for reprojection error
minimization. The optimization can include additional
constraints to create a smooth transition between
keyframes. In Figure 5, constraining the camera height
as a linear function of distance from the initial point
reduces the jitter due to the errors in 2D-3D point
selection process.

Path Interpolation

After the camera pose is estimated for each keyframe,
the poses in the remaining frames can be interpolated.

The interpolation of the camera 3D position is
performed using Kochanek-Bartels Cubic Splines (also
TCB splines) [7]. TCB splines take a sequence of
position keyframes and perform a cubic polynomial
interpolation between each pair of key frames by
choosing incoming and outgoing tangent vectors in a
specific way. The shape of the interpolated trajectory
around the nodes is controlled via three parameters: (1)
tension which controls the curvature around a control
point, (2) continuity which controls the amount of
discontinuity between incoming and outgoing tangents
at a control point, and (3) bias which controls the
direction of the path at a control point. The three
parameters can be adjusted through the VARS UI. The
algorithm was modified to allow for the interpolation of
non-uniformly sampled data points.

Figure 4. An (a) original (distorted) input video frame, (b) undistorted video frame, (c) rendered 3D view, and (d) overlay
of the undistorted video frame and rendered 3D view.

Figure 5. Camera poses in selected keyframes before
(top) and after (bottom) the global optimization. The
chart shows the value of the vertical coordinate of the
camera pose.

-6

-4

-2

0

2

10 15 20 25 30 35 40

z(
ft

)

t(s)

Camera Height (z-coordinate)

Initial

Optimized

6

The orientation of the camera is represented using
quaternions. Accordingly, we employ the SLERP
algorithm for interpolating camera orientations [8],
which performs a spherical linear interpolation. SLERP
ensures a smooth transition of camera orientation angles
between different keyframes.

To determine the actual vehicle path (i.e., of the vehicle
center of mass - CG), the transformation between the
camera and the vehicle CG is required. The software
can then export the path (including position and
orientation) of the coordinate system attached to the
vehicle CG.

Drive-through Rendering

The interpolated path can now be used to render the
drive-through. To validate the path reconstruction,
VARS software renders the point cloud/mesh scene with
the same camera parameters as the original input video.
In our rendering pipeline, we first render the undistorted
view of the scene from the virtual camera and then apply
the additional distortion mapping to its view (based on
the camera distortion coefficients) to emulate the
distortion effects of the original camera lens. This
produces an output that very closely matches the input
video. Figure 6 shows the output video rendering for a
selected set of camera frames of the drive-through. Note
that the camera pose for non-keyframes (frames #120,
#187, and #257) was interpolated as described
previously.

The rendering from the original camera point of view is
used to visually verify the fidelity of the reconstructed
path. If needed, one can return and correct specific
keyframes, optimize the path, and re-interpolate the
output. Once the path is validated, the software can
generate other viewpoints such as the driver’s point of
view, top view and vehicle chase view, as shown in
Figure 7. The drive-through may be simulated with or
without a vehicle mesh that is imported as an OBJ
Wavefront file.

Figure 6. Original video and corresponding rendered camera view for several example frames.

Figure 7. (a) Original video frame, (b) rendered frame from
camera viewpoint, (c) rendered frame from driver’s
viewpoint (FOV 90˚), and (d) rendered frame from top-view
with driver cone of vision displayed.

7

Object Tracking

Given the path of the vehicle camera, VARS software
can also be used to estimate the position of certain
objects captured by the camera. Because the inverse
transformation from 2D (video) space to 3D (point
cloud) space is indeterminate and can only be performed
up to a scale factor, the software maps image plane
points to scene points on the ground surface (e.g., traffic
cone, parked car tires, pedestrian, obstacle in the road).
Accordingly, the intersection of the ray with the ground
plane identifies the position of the object.

The accuracy of this estimation depends on several
factors, including the fidelity of camera intrinsic
parameters, accuracy of the camera pose estimation, the
resolutions of the video and point cloud in the region of
interest, and the accuracy of point selection. Objects far
away from the camera with a smaller pixel footprint
result in higher variance of the corresponding 3D ray
estimation and leading to a higher chance for error in the
position estimation of the object. The variance can be
reduced for static targets by marking them in several
consecutive frames and determining the average
position of the target. This technique is especially useful
for parked vehicles.

Figure 8 shows an example of target estimation on a
manhole selected in one of the video frames. Given
camera intrinsic parameters and the current camera
pose, the selected 2D point transforms into a ray in the
3D space (shown in green). The software automatically
detects the intersection of the ray with the point cloud
and assigns the 3D target point coordinates in the scene.
The 3D coordinates can then be exported for further
processing. For example, a parked car could be added at
the right position in the model of the roadway.

Case Study 1

To demonstrate the accuracy of the VARS software in
the reconstruction of a vehicle path, we conducted a test
drive for comparison with GPS collected data. We also
input the reconstructed path to HVE to demonstrate the
use of VARS as a pre-processor to an HVE analysis.

We conducted the test drive on Willow Street in
Alameda, CA. In the test, a sedan traveled down a 2-
lane street, with gentle left and right steering maneuvers
introduced along the travel path. The point cloud data
was obtained by a laser scanner. A total of 10 scans were
collected alongside the street block to cover a distance
of about 550 feet (Figure 9).

For the video data collection, an Apollo camera (Model
RR-CIR236) was mounted on a tripod and placed on the
passenger seat of a convertible sedan. The total height
of the camera was approximately 6 feet from the ground.
The camera’s analogue output was recorded using
ArcSoft ShowBiz software with a resolution of 720x480
px and frame rate of 29.97 FPS. For the analysis, the
video was resampled to 640x480 px and 10 FPS, which
is one of the typical output formats for bus videos using
the Apollo camera system.

A Video VBOX Lite GPS data logger (RaceLogic Ltd)
was used as ground truth. The VBOX video camera was
mounted on the windshield to help synchronize the two
recordings and the data collection log rate was set at 10
Hz.

Figure 8. Example showing target estimation from the video
frame. The center of the manhole is selected in the video
image. The intersection between the corresponding ray
(green line) and ground plane defines the location in 3D
space which, in this example, aligns with the actual location
of the manhole (red marker).

Figure 9. Output path as recorded by VBOX (left) and VARS
(right). The green bars in the left image show the start and
end of the segment analyzed with VARS.

8

The vehicle, driven from south to north, made half a U-
turn at the crossroad before coming to a full stop. We
present the results for the first segment of the drive
while the vehicle was already moving near the boundary
of the point cloud scan. Figure 9 shows the output path
as recorded by the VBOX and the path recovered from
the video of the drive. The segment of the matching path
is highlighted in the figure.

Figure 9 was developed following the analysis steps
outlined in the previous discussions, as illustrated by the
results in Figures 3 to 8.

Figure 10 shows the driven distance from the starting
point of the video analysis to the end of the drive. The
VARS calculated driven distance was in agreement with
the GPS-based measurement by VBOX.

The VARS estimated vehicle speed also matched the
GPS-based VBOX measurement. Figure 11 shows a
comparison of the speed profiles. The VARS speed was
calculated based on the calculated 3D vehicle
displacements over known intervals of time. The
maximum recorded vehicle speed was 24.9 mph and

24.4 mph for the VARS analysis and the VBOX
measurement, respectively.

To demonstrate the use of VARS as a pre-processor to
an HVE analysis, we input the calculated VARS vehicle
motion (Figures 9 to 11) to HVE’s Simon solver for a
vehicle dynamics analysis. By characterizing the
vehicle path with keyframes from VARS, the Driver
Model Path Follower option using Simon calculates the
necessary driver input to best fit the specified travel
path. Figure 12 illustrates the 8 keyframes from the
VARS analysis serving as input to HVE (top figure).
The bottom of Figure 12 shows that the resulting HVE
vehicle path compared well with the VARS motion
(Path Follower).

Refinement to the HVE driver input improved the
matching of the path (Driver Controls) (Figures 12 to
14). For example, increasing the steering input increased
the yaw angle, which improved the path matching.
Further, increased braking toward the end of the drive
also improved matching of the vehicle speed.

The need for these refinements could have been the
result of the limited resolution of the prescribed vehicle
path. In the current version of HVE, the path description
is limited to eight keyframes. If additional keyframes
could be included as input, the Path Follower prediction
could possibly have been improved.

Figure 11. Comparison of speed profile calculated from
VARS analysis and measured by VBOX.

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40

Sp
ee

d
(m

ph
)

Time (s)

Vehicle Speed

VBOX (GPS)

VARS Analysis

Figure 10. Comparison of the driven distance as estimated
from an analysis using VARS and as measured by VBOX
from GPS data.

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35 40

D
is

ta
nc

e
(f

t)

Time (s)

Driven Distance

VBOX (GPS)

VARS Analysis

Figure 12. Keyframes from the VARS analysis to serve as
input to HVE (top graph). The bottom graph compares HVE
calculated vehicle paths with the VARS path. The “Path
Follower” path is the HVE output using VARS keyframes as
input; the “Driver Controls” path is HVE output using
adjusted driver input. The vertical scale of the bottom graph
is amplified to highlight the differences in the paths.

-6

-4

-2

0

2

4

6

-10 40 90 140 190

-Y
 (f

t)

X (ft)

Paths

VARS Path Follower Driver Controls

9

Case Study 2

Case study 2 is a demonstration of the VARS software
in the reconstruction of a real world accident. The
subject accident involves a sideswipe collision of two
vehicles at an intersection in San Francisco. One of the
vehicles lost control as a result of the impact, and
subsequently collided into a guardrail at the nearest
street corner. That vehicle was equipped with an
onboard system, which captured the collision sequence
on video. The system also captured the speed time
history.

In this case study, we analyze the collision sequence
using the VARS software, and compare with results of
an accident reconstruction performed several years ago.
In that reconstruction analysis, the pre-impact motion
was semi-quantitatively performed by frame-to-frame
analysis. HVE’s EDSMAC4 solver was used to simulate
the collision sequence.

Figure 15 compares selected output frames from the
onboard video, and the corresponding reconstructed
views by VARS and EDSMAC4. In our experience, the
matching can be achieved to allow for overlay of the
reconstructed video with the accident video.

Figure 16 compares the speed time history of the VARS
and the EDSMAC4 analysis with the onboard
surveillance system of the subject vehicle. Good
matching of the speed profile was achieved up to the
impact with the guardrail. In the EDSMAC4 analysis, a
rigid barrier was used to model the guardrail, which
resulted in a velocity change at impact over a shorter
duration as compared to the onboard speed data.

Figure 15. Selected output frames from (a) onboard video,
and the corresponding reconstructed views by (b) VARS, and
(c) HVE EDSMAC4 simulation.

Figure 13. Driver input time history as calculated by HVE
using the VARS keyframes (Path Follower), and adjusted
to improve the matching of vehicle motion in VARS
(Driver Controls).

-80
-60
-40
-20

0
20
40
60

0 2 4 6 8

St
ee

r A
ng

le
 (d

eg
re

es
)

Time (s)

Steer

Path Follower

Driver Controls

-2
0
2
4
6
8

10
12
14

0 2 4 6 8

Br
ak

e
(lb

)

Time (s)

Brake

Path Follower

Driver Controls

0.0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8

Th
ro

tt
le

 (%
/1

00
)

Time (s)

Throttle

Path Follower

Driver Controls

Figure 14. Comparison of VARS vehicle motion with that
calculated by HVE using path follower on VARS keyframes
(Path Follower), and adjusted to improve the matching of
VARS vehicle motion (Driver Controls).

10

15

20

25

30

0 1 2 3 4 5 6 7

Sp
ee

d
(m

ph
)

Time (s)

Speeds

VARS Path Follower Driver Controls

170
172
174
176
178
180
182
184
186
188
190
192

0 1 2 3 4 5 6 7

Ya
w

 (d
eg

re
es

)

Time (s)

Yaw Angles

VARS

Path Follower

Driver Controls

10

Reducing the impact stiffness of the barrier would have
resulted in better matching with the speed data post-
impact.

The predicted vehicle paths by VARS (green line) and
EDSMAC4 (white vehicle depicted in 1 second
intervals) are compared in Figure 17. The semi-
quantitative estimate of the pre-impact position follows
the calculated VARS path well. In future HVE analysis,
use of VARS to establish pre-impact vehicle motions
would further improve the overall accuracy of the
simulation.

Conclusions

This study presents Video-based Accident
Reconstruction System (VARS), a software tool
developed for the motion analysis of traffic accidents
captured by vehicle and land surveillance cameras.
Using a photogrammetric approach for a single video
input and a point cloud of the environment, the VARS
software tool has demonstrated its capability to produce
an accurate vehicle travel path and its corresponding
speed profile. The VARS software is capable of

reproducing onboard video views, while matching
vehicle motion data as measured by a GPS-based data
logger.

The VARS analysis specializes in recreating the
kinematics (geometry) of vehicle movement. Coupled
with vehicle dynamics software such as HVE, the
VARS/HVE combined analysis is capable of recreating
vehicle dynamics in reconstruction of real world
accidents. We have demonstrated that this can be
accomplished through use of the VARS output as input
to vehicle dynamics simulation tools.

In general, the extracted speed accuracy depends on the
alignment of the camera poses in the keyframe, density
of the keyframe segmentation, video frame rate, and
vehicle movement between the keyframes. Speed data
could also be extracted from the interpolated frames to
provide higher sampling density and averaged across
multiple frames to further smooth the noise.

The development of VARS is ongoing. The functional
features implemented to date have been used
successfully in the analyses of real world accidents. The
current implementation supports a single video input.
Future development will combine video data from
multiple cameras to enhance the ability to accurately
recreate vehicle movement. Additional future
development includes improvements in areas such as
camera calibration and user interaction with point cloud
data (e.g., view navigation, keypoint selection).

References

1. Bradski, G., The OpenCV Library, Dr. Dobb's
Journal of Software Tools (2000). URL:
https://opencv.org

2. Point Cloud Library (PCL), URL:
http://www.pointclouds.org

3. Ma, Y., Soatto, S., Kosecka, J., Sastry, S.S., An
Invitation to 3-D Vision: From Images to
Geometric Models, Springer-Verlag, New
York, NY, 2004

4. Tsai, R.Y., A versatile camera calibration
technique for high-accuracy 3D machine vision
metrology using off-the-shelf TV cameras and
lenses, IEEE Journal of Robotics and
Automation, RA3(4): 323–344, 1987

Figure 16. Comparison of speed profile calculated from
VARS analysis, HVE analysis, and the vehicle surveillance
system.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

Sp
ee

d
(m

ph
)

Time (s)

Vehicle Speed

 Speed Data
HVE EDSMAC4
VARS

Figure 17. Comparison of vehicle travel path as calculated
by VARS (green line) and HVE EDSMAC analysis (vehicle
position depicted at 1 second intervals).

11

5. Fischler, M.A., Bolles, R.C., Random sample
consensus: A paradigm for model fitting with
applications to image analysis and automated
cartography, Communications of the ACM,
24(6):381–395, 1981

6. Moré, J.J., The Levenberg-Marquardt
algorithm: Implementation and theory,"
Numerical Analysis, pp. 105-116. Springer,
Berlin, Heidelberg, 1978

7. Eberly, D., Kochanek-Bartels Cubic Splines
(TCB Splines), 2008, URL:

https://www.geometrictools.com/Documentati
on/KBSplines.pdf

8. Shoemake, K., Animating Rotation with
Quaternion Curves, Proceedings of
SIGGRAPH, 19(3):245-254, 1985

9. Engineering Dynamics Corporation, HVE
Software, URL:
http://www.edccorp.com/products/hve.html

