
HVE-WP-2020-3 

 

Video-based Accident Reconstruction 

from Vehicle Camera System 

Gregorij Kurillo, Evan Hemingway, Louis Cheng 
Applied BioMechanics 

Alameda, CA 

 

 

 

 

 

 

 

 

 

 

 

 

 

2020 HVE Forum 

Austin, TX 

February 24 – 28, 2020 

 

8625 SW Cascade Avenue, Suite 200, Beaverton, OR 97008, USA   Tel: 888.768.6216    www.edccorp.com  



To request permission to reprint a technical paper or permission to use copyrighted 

EDC publications in other works, contact EDC 

Positions and opinions advanced in this paper are those of the author(s) and not 

necessarily those of EDC.  The author is solely responsible for the content of the 

paper. 

 

Persons wishing to submit papers to be considered for presentation or publication 

during an HVE Forum should send the manuscript or a 300 word abstract of a 

proposed manuscript to: Training Manager, Engineering Dynamics Corporation.

 



 
 

HVE-WP-2020-3 
 

Video-based Accident Reconstruction  
from Vehicle Camera System 

 
Gregorij Kurillo, Evan Hemingway, Louis Cheng 

Applied BioMechanics, Alameda, CA  
 

Abstract 
 
Vehicle surveillance camera systems are becoming 
prevalent in public transportation as well as private 
vehicles. In this paper, we present Video-based 
Accident Reconstruction System (VARS), a software 
tool developed for the motion analysis of traffic 
accidents as captured by vehicle and land surveillance 
cameras. Working with the point cloud data of an 
accident site, this 3D interactive tool provides frame-to-
frame motion analysis of the vehicle and the location of 
objects in the environment (e.g., other vehicles, 
pedestrians). Based on an annotation of keyframes in the 
video and the point cloud, this software uses 
photogrammetry and computer vision techniques to 
extract the path and velocity of the vehicle(s) and 
surrounding objects of interest. The tool can render 
drive-through videos from different vantage points such 
as from the vehicle camera, driver’s viewpoint, and 
other stationary or moving camera views. Furthermore, 
the calculated vehicle motion data can be exported for a 
vehicle dynamics analysis in programs such as HVE.  
The latter half of this paper provides step by step 
illustrations of the path reconstruction process for input 
to and use in HVE. 
 
Introduction 
 
Vehicle surveillance camera systems are now 
ubiquitous in public transportation and are becoming 
prevalent in private vehicles. The video information 
recorded by such systems may be accompanied by GPS 
data and other telemetry obtained from the vehicle (e.g., 
speed, braking events). In the case of traffic accidents, 
the video information is extremely valuable in 
determining what happened in the accident and 
understanding the possible roles played by surrounding 
factors. To gain further insight into what happened, it is 
often desirable to visualize and analyze the accident not 

only from the viewpoint of the attached camera systems 
on the vehicle, but also from other relevant stationary or 
moving locations. One of the major challenges in the 
video analysis is in mapping the video information into 
a 3D simulation. This process can be done manually by 
analyzing the video frame-by-frame and matching the 
camera view from a simulated vehicle path to the video 
camera’s path, although this process may prove to be 
tedious and time consuming. While commercial 
photogrammetry software is available for video analysis 
using footage from stationary surveillance video 
cameras, there are currently few, if any, available 
products that can facilitate a vehicle path reconstruction 
directly from video captured by a moving camera. 
 
In this paper, we present Video-based Accident 
Reconstruction System (VARS), a software tool 
developed for the motion analysis of traffic accidents 
captured by vehicle and land surveillance cameras. The 
development of VARS is ongoing, but the functional 
features implemented to date have been used 
successfully in the analyses of real world accidents. This 
paper presents the technical details of the software and 
demonstrates its functionality and utility for HVE by 
reconstructing a test drive with a GPS-based data 
recorder and a real-world accident. 
 
Video-based Accident Reconstruction System 
(VARS) 
 
VARS implements photogrammetry and computer 
vision techniques to extract the paths of vehicles and 
surrounding objects of interest using surveillance video 
and point cloud data of the accident site as inputs. The 
software features an interactive user interface (UI) that 
provides the following functionality: 
 

 frame-by-frame video analysis (currently for a 
single view video input) 
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 3D visualization of point cloud data and/or mesh 
model of the environment 

 registration of camera pose at selected 
keyframes 

 reconstruction of vehicle path for drive-through 
simulation 

 rendering of drive-through videos from different 
vantage points such as driver’s point of view, top 
view and vehicle chase view  

 estimation of object pose (e.g., parked vehicles, 
traffic cones, moving pedestrians) from video 
data 

 export of vehicle path and object coordinates for 
use in vehicle dynamics simulation software 
such as HVE. 

 
Figure 1 shows the main user interface of VARS. The 
central window displays the point cloud of the 
environment and provides an interactive view of the 
scene with a toolbar for quick selection of fixed views. 
As will be soon described, the central window is used to 
select 3D keypoints for frame registration. The two side 
graphics windows feature the current rendered camera 
viewpoint (top right) and the current video frame as 
captured by the vehicle camera (bottom right). Video 

and keyframe controls are provided under the camera 
window along with information on the current frame 
number and time stamp. The panel on the left side of the 
UI, divided into several sections, provides granulated 
controls for the data analysis, including: (1) project 
information, (2) point cloud controls for setting point 
size and lighting, (3) keyframes for managing path 
segmentation, (4) path interpolation with export to video 
capabilities, (5) target (object) tracking, (6) manual 
camera controls, (7) vehicle mesh settings, and (8) 
controls for exporting path data.  
 
The software user interface (UI) is built within a Qt 
Framework and using the C++ programming language. 
Vision processing is supported by the OpenCV (Open 
Source Computer Vision) Library [1], while the point 
cloud analysis and visualization are implemented using 
PCL (Point Cloud Library) [2]. 
 
In the remainder of this paper we will present the 
processing pipeline for data analysis using the video and 
point cloud. We will compare the calculated vehicle 
path with a GPS-based data recorder, and analyze the 
vehicle dynamics associated with the calculated vehicle 
motion using the HVE program. 
 

Figure 1. The user interface of VARS featuring a 3D visualization of an accident site’s point cloud and an interactive video 
player. 
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Cameras and Input Video Data 
 
Vehicle video surveillance systems consist of one or 
more cameras that are mounted on the vehicle frame.  
Different camera models may be used on the same 
vehicle, depending on requirements such as size, 
mounting location (interior vs. exterior), field of view, 
high dynamic range, and night vision.  The resolution of 
the camera is one of the factors that determines the level 
of detail visible in the image. Cameras come in various 
resolutions with the most common resolutions being 
VGA (640x480 px), 720p HD (1280x720 px), and full 
HD (1920x1080 px). Another important factor is the 
type of the lens mounted on the camera. The lenses are 
typically characterized either by their focal length or 
angular field of view. For a given sensor size, the shorter 
the focal length, the wider the angular field of view. 
Since the sensor size varies across camera models, the 
focal length is typically expressed as a 35 mm 
equivalent focal length for ease of comparison. Cameras 
with wider angular field of view typically exhibit large 
geometric distortions of the captured image, which are 
most apparent on the edges of the video frame.  
 
In vehicle video surveillance systems, the output of a 
camera is typically recorded by a central recording 
device which timestamps the acquired video frames and 
stores them into persistent memory such as a solid state 
drive. Oftentimes these devices also store other 
metadata such as vehicle events (braking, signals, door 
opening, accelerometer data, and GPS data). In order to 
store video data from multiple views across a substantial 
time period (e.g., 30 days), the video image may be 
reduced in: (1) resolution from its original capture, (2)  

quality due to applied video compression, and (3) frame 
rate.  
 
When using video data from vehicle video surveillance 
systems for photogrammetry and computer vision-based 
analyses, all of the above factors should be taken into 
consideration.  
 
The Camera Model 
 
The key step to extracting the camera path and other 
information from a video sequence is to determine an 
accurate calibration of the camera and to register it to 
the world space. The digital camera is a very complex 
opto-electrical device, but it is often sufficient to 
describe its image creation properties by a simplified 
geometric model. We use a standard pinhole camera 
model (Figure 2) with radial and tangential distortion 
correction [3]:  
 

𝑥 =
𝑓 0 𝑐
0 𝑓 𝑐

0 0 1

1
0
0

  
0
1
0

  
0
0
1

  
0
0
0

𝑅 𝑇
0 1

𝑋 . (1) 

 
The model in Eq. 1 is a linear mapping of the 3D scene 
point 𝑋  that can be seen by the camera to the projected 
image of the point, represented by its pixel coordinates 
𝑥 . The linear mapping is represented by the 3×4 
projection matrix, 𝑃. The dimensions of the vectors 𝑋   
and 𝑥  are 4×1 and 3×1, respectively, as they are 
expressed using homogeneous coordinates. The 
parameters 𝑓  and 𝑓  are the camera focal lengths (in 
pixel units) in the horizontal and vertical directions of 
the image while 𝑐  and 𝑐  are the image plane 
coordinates of the optical center of the lens (typically 
around the center of the image). These four scalar 
parameters are considered intrinsic camera parameters 
since they are properties specific to a particular camera. 
Even for cameras of the same model, the intrinsic 
parameters somewhat differ and require some 
refinement to find the correct values. The mapping also 
depends on the extrinsic camera parameters 𝑅 and 𝑇, 
which are the 3×3 orientation matrix and the 3×1 
position vector of the camera expressed in the world 
coordinates, respectively. In this application, the 
coordinate system associated with the point cloud is 
chosen as the world coordinate system.  

Figure 2. Pinhole camera model geometry. 
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Camera distortion is captured by a nonlinear mapping 
from the projected point locations predicted by the 
linear mapping of Eq. 1 to their actual recorded location 
on the image. A radial distortion is applied to the result 
of Eq. 1 using two parameters 𝑘  and 𝑘  as follows: 
 

𝑥 = 𝑥(1 + 𝑘 𝑟 + 𝑘 𝑟 ), 
𝑦 = 𝑦(1 + 𝑘 𝑟 + 𝑘 𝑟 ). 

 
Here, 𝑥 =  𝑥2𝐷(1), while 𝑦 = 𝑥2𝐷(2) and 𝑥  and 𝑦  

are their corrected values.  The distance 𝑟 is given by 

𝑟 =  𝑥2 + 𝑦2. Following radial distortion, a tangential 
distortion may be applied to account for any 
misalignment between the image plane and the lens 
principal plane. The deformation applied to the image is 
described with tangential distortion parameters 𝑝  and 
𝑝  as follows: 
 

𝑥 = 𝑥 + (2 + 𝑝 𝑥𝑦 + 𝑝 (𝑟 + 2𝑥 )), 
𝑦 = 𝑦 + (2 + 𝑝 (𝑟 + 2𝑦 ) + 2𝑝 𝑥𝑦). 

 
The tangential distortion is typically very small or zero 
for high quality vision cameras. To estimate all of the 
intrinsic parameters, cameras can be calibrated using a 
known target, such as a black and white planar 
chessboard target of known dimensions [4]. Based on a 
set of captured points, a system of equations 
incorporating the camera model from Eq. 1 can be 
formed and unknown parameters can be derived. 
OpenCV computer vision library includes several 
calibration methods that can be used for calibration with 
the target.  
 
If it is not possible to collect custom target data, the 
camera’s intrinsic parameters can be estimated from the 
camera specifications (focal length, sensor size, image 
resolution). Using selected scene features from one or 
two video frames and their corresponding elements in 
the point cloud of the accident scene, a non-linear 
optimization can be applied to simultaneously refine and 
adjust both the extrinsic and intrinsic parameters. This 
process may require an iterative approach where the 
initial refined solution can be used as the input to further 
optimization.   
 
Camera Pose Estimation 
 
Given the initial intrinsic camera parameters, 3D point 
cloud of the scene and a video frame, there is sufficient 

information to estimate the camera pose (i.e., the 
extrinsic camera parameters given by the matrices 𝑅 and 
𝑇) by the 3D-2D mapping between the points 
represented by the matrix 𝑃 in Eq. 1. Although machine 
learning (ML) techniques could serve to match 3D and 
video imagery, this could be a difficult task in accident 
reconstruction applications, as the time between the 
video data and point cloud acquisition may be months 
or years apart. There may be changes in the lighting 
conditions, objects may no longer be present (e.g., 
parked cars, road work), the environment may have 
significant changes (e.g., grown or trimmed vegetation, 
re-building of structures), and there may be occlusions 
or missing data in the point cloud. Therefore, manual 
point correspondence selection remains the best option 
for analysis. In order to limit the amount of manual 
interaction, we limit the point matching only to selected 
keyframes and then interpolate the results. 
 
In the first step, the user ideally selects between 8 and 
12 keypoints in the point cloud window and the video 
frame (Figure 3). The keypoints for matching can 
include various static landmarks that are visible in both 
data sets such as road markings, traffic signals, light 
posts and features on neighboring structures. The 
selection of keypoints in the video should be distributed 
across the video frame while avoiding selection points 
situated close to the distorted edges in the keyframe. 
Furthermore, the selected keypoints should include 
different distance values that are not coplanar or 
collinear. 
 
Once the selection is complete, the pose estimation 
algorithm determines the camera pose for a given set of 
object points, their corresponding image projections, 
and the camera intrinsic parameters (Figure 3). The 
algorithm finds a pose that minimizes the reprojection 
error of 3D points to their 2D counterparts while 
rejecting large outliers via the RANSAC procedure [5]. 

  
Figure 3. Selected keypoints in the video frame (left) and 
corresponding keypoints in the point cloud (right).  
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The reprojection error is defined as the Euclidean 
distance between the observed keypoints in the video 
frame and the image of the keypoints from the point 
cloud, as calculated using Eq. 1.  
 
The determination of camera pose is repeated for each 
keyframe in the video sequence. The keyframes should 
ideally be selected at constant time intervals. The choice 
of time interval between two keyframes depends on the 
vehicle speed and the frame rate of the video. For 
example, time intervals between 0.5 s and 1.0 s work 
well for a video with frame rate of 10 FPS. Additional 
keyframes can be introduced to capture important 
events, such as the start of a turn, the time of impact and 
appearance of an object of interest. Figure 4 compares 
a selected keyframe as captured by the camera with the 
corresponding reconstructed view using the point cloud. 
For accurate comparison, the video frame is undistorted 
and overlaid with the rendered 3D view from the 
estimated camera pose. 
 
Once the sequence is segmented into keyframes and the 
camera pose is determined for each frame, the software 
can further optimize both the intrinsic and extrinsic 
parameters or the extrinsic parameters only. We use the 
Levenberg-Marquardt algorithm [6] to solve the non-
linear least squares problem for reprojection error 
minimization. The optimization can include additional 
constraints to create a smooth transition between 
keyframes. In Figure 5, constraining the camera height 
as a linear function of distance from the initial point 
reduces the jitter due to the errors in 2D-3D point 
selection process. 
 
Path Interpolation 
 
After the camera pose is estimated for each keyframe, 
the poses in the remaining frames can be interpolated. 

The interpolation of the camera 3D position is 
performed using Kochanek-Bartels Cubic Splines (also 
TCB splines) [7]. TCB splines take a sequence of 
position keyframes and perform a cubic polynomial 
interpolation between each pair of key frames by 
choosing incoming and outgoing tangent vectors in a 
specific way. The shape of the interpolated trajectory 
around the nodes is controlled via three parameters: (1)  
tension which controls the curvature around a control 
point, (2) continuity which controls the amount of 
discontinuity between incoming and outgoing tangents 
at a control point, and (3) bias which controls the 
direction of the path at a control point. The three 
parameters can be adjusted through the VARS UI. The 
algorithm was modified to allow for the interpolation of 
non-uniformly sampled data points.  

 
Figure 4.  An (a) original (distorted) input video frame, (b) undistorted video frame, (c) rendered 3D view, and (d) overlay 
of the undistorted video frame and rendered 3D view. 

 

 

Figure 5. Camera poses in selected keyframes before 
(top) and after (bottom) the global optimization. The 
chart shows the value of the vertical coordinate of the 
camera pose. 
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The orientation of the camera is represented using 
quaternions. Accordingly, we employ the SLERP 
algorithm for interpolating camera orientations [8], 
which performs a spherical linear interpolation. SLERP 
ensures a smooth transition of camera orientation angles 
between different keyframes. 
 
To determine the actual vehicle path (i.e., of the vehicle 
center of mass - CG), the transformation between the 
camera and the vehicle CG is required.  The software 
can then export the path (including position and 
orientation) of the coordinate system attached to the 
vehicle CG. 
 
Drive-through Rendering 
 
The interpolated path can now be used to render the 
drive-through. To validate the path reconstruction, 
VARS software renders the point cloud/mesh scene with 
the same camera parameters as the original input video. 
In our rendering pipeline, we first render the undistorted 
view of the scene from the virtual camera and then apply 
the additional distortion mapping to its view (based on 
the camera distortion coefficients) to emulate the 
distortion effects of the original camera lens. This 
produces an output that very closely matches the input 
video. Figure 6 shows the output video rendering for a 
selected set of camera frames of the drive-through. Note 
that the camera pose for non-keyframes (frames #120, 
#187, and #257) was interpolated as described 
previously.  

 
The rendering from the original camera point of view is 
used to visually verify the fidelity of the reconstructed 
path. If needed, one can return and correct specific 
keyframes, optimize the path, and re-interpolate the 
output. Once the path is validated, the software can 
generate other viewpoints such as the driver’s point of 
view, top view and vehicle chase view, as shown in 
Figure 7. The drive-through may be simulated with or 
without a vehicle mesh that is imported as an OBJ 
Wavefront file. 

 
Figure 6. Original video and corresponding rendered camera view for several example frames. 

Figure 7. (a) Original video frame, (b) rendered frame from 
camera viewpoint, (c) rendered frame from driver’s 
viewpoint (FOV 90˚), and (d) rendered frame from top-view 
with driver cone of vision displayed. 
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Object Tracking 
 
Given the path of the vehicle camera, VARS software 
can also be used to estimate the position of certain 
objects captured by the camera. Because the inverse 
transformation from 2D (video) space to 3D (point 
cloud) space is indeterminate and can only be performed 
up to a scale factor, the software maps image plane 
points to scene points on the ground surface (e.g., traffic 
cone, parked car tires, pedestrian, obstacle in the road). 
Accordingly, the intersection of the ray with the ground 
plane identifies the position of the object.  
 
The accuracy of this estimation depends on several 
factors, including the fidelity of camera intrinsic 
parameters, accuracy of the camera pose estimation, the 
resolutions of the video and point cloud in the region of 
interest, and the accuracy of point selection. Objects far 
away from the camera with a smaller pixel footprint 
result in higher variance of the corresponding 3D ray 
estimation and leading to a higher chance for error in the 
position estimation of the object. The variance can be 
reduced for static targets by marking them in several 
consecutive frames and determining the average 
position of the target. This technique is especially useful 
for parked vehicles. 
 
Figure 8 shows an example of target estimation on a 
manhole selected in one of the video frames. Given 
camera intrinsic parameters and the current camera 
pose, the selected 2D point transforms into a ray in the 
3D space (shown in green). The software automatically 
detects the intersection of the ray with the point cloud 
and assigns the 3D target point coordinates in the scene. 
The 3D coordinates can then be exported for further 
processing. For example, a parked car could be added at 
the right position in the model of the roadway. 

Case Study 1 
 
To demonstrate the accuracy of the VARS software in 
the reconstruction of a vehicle path, we conducted a test 
drive for comparison with GPS collected data.  We also 
input the reconstructed path to HVE to demonstrate the 
use of VARS as a pre-processor to an HVE analysis.   
 
We conducted the test drive on Willow Street in 
Alameda, CA.  In the test, a sedan traveled down a 2-
lane street, with gentle left and right steering maneuvers 
introduced along the travel path.  The point cloud data 
was obtained by a laser scanner. A total of 10 scans were 
collected alongside the street block to cover a distance 
of about 550 feet (Figure 9). 
 

For the video data collection, an Apollo camera (Model 
RR-CIR236) was mounted on a tripod and placed on the 
passenger seat of a convertible sedan. The total height 
of the camera was approximately 6 feet from the ground. 
The camera’s analogue output was recorded using 
ArcSoft ShowBiz software with a resolution of 720x480 
px and frame rate of 29.97 FPS. For the analysis, the 
video was resampled to 640x480 px and 10 FPS, which 
is one of the typical output formats for bus videos using 
the Apollo camera system.  
 
A Video VBOX Lite GPS data logger (RaceLogic Ltd) 
was used as ground truth. The VBOX video camera was 
mounted on the windshield to help synchronize the two 
recordings and the data collection log rate was set at 10 
Hz.  
 

Figure 8. Example showing target estimation from the video 
frame. The center of the manhole is selected in the video 
image. The intersection between the corresponding ray 
(green line) and ground plane defines the location in 3D 
space which, in this example, aligns with the actual location 
of the manhole (red marker). 

Figure 9. Output path as recorded by VBOX (left) and VARS 
(right). The green bars in the left image show the start and 
end of the segment analyzed with VARS. 
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The vehicle, driven from south to north, made half a U-
turn at the crossroad before coming to a full stop. We 
present the results for the first segment of the drive 
while the vehicle was already moving near the boundary 
of the point cloud scan. Figure 9 shows the output path 
as recorded by the VBOX and the path recovered from 
the video of the drive. The segment of the matching path 
is highlighted in the figure. 
 
Figure 9 was developed following the analysis steps 
outlined in the previous discussions, as illustrated by the 
results in Figures 3 to 8. 
 
Figure 10 shows the driven distance from the starting 
point of the video analysis to the end of the drive. The 
VARS calculated driven distance was in agreement with 
the GPS-based measurement by VBOX. 

 
The VARS estimated vehicle speed also matched the 
GPS-based VBOX measurement.  Figure 11 shows a 
comparison of the speed profiles. The VARS speed was  
calculated based on the calculated 3D vehicle 
displacements over known intervals of time. The 
maximum recorded vehicle speed was 24.9 mph and 

24.4 mph for the VARS analysis and the VBOX 
measurement, respectively. 
 
To demonstrate the use of VARS as a pre-processor to 
an HVE analysis, we input the calculated VARS vehicle 
motion (Figures 9 to 11) to HVE’s Simon solver for a 
vehicle dynamics analysis. By characterizing the 
vehicle path with keyframes from VARS, the Driver 
Model Path Follower option using Simon calculates the 
necessary driver input to best fit the specified travel 
path. Figure 12 illustrates the 8 keyframes from the 
VARS analysis serving as input to HVE (top figure).  
The bottom of Figure 12 shows that the resulting HVE 
vehicle path compared well with the VARS motion 
(Path Follower).    
 
Refinement to the HVE driver input improved the 
matching of the path (Driver Controls) (Figures 12 to 
14). For example, increasing the steering input increased 
the yaw angle, which improved the path matching. 
Further, increased braking toward the end of the drive 
also improved matching of the vehicle speed.   
 
The need for these refinements could have been the 
result of the limited resolution of the prescribed vehicle 
path.  In the current version of HVE, the path description 
is limited to eight keyframes. If additional keyframes 
could be included as input, the Path Follower prediction 
could possibly have been improved. 

 
Figure 11. Comparison of speed profile calculated from 
VARS analysis and measured by VBOX.  
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Figure 10. Comparison of the driven distance as estimated 
from an analysis using VARS and as measured by VBOX 
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Figure 12.  Keyframes from the VARS analysis to serve as 
input to HVE (top graph).  The bottom graph compares HVE 
calculated vehicle paths with the VARS path.  The “Path 
Follower” path is the HVE output using VARS keyframes as 
input; the “Driver Controls” path is HVE output using 
adjusted driver input.  The vertical scale of the bottom graph 
is amplified to highlight the differences in the paths. 

-6

-4

-2

0

2

4

6

-10 40 90 140 190

-Y
 (f

t)

X (ft)

Paths

VARS Path Follower Driver Controls



9 
 

 

Case Study 2 
 
Case study 2 is a demonstration of the VARS software 
in the reconstruction of a real world accident.  The 
subject accident involves a sideswipe collision of two 
vehicles at an intersection in San Francisco.  One of the 
vehicles lost control as a result of the impact, and 
subsequently collided into a guardrail at the nearest 
street corner. That vehicle was equipped with an 
onboard system, which captured the collision sequence 
on video. The system also captured the speed time 
history.    
 
In this case study, we analyze the collision sequence 
using the VARS software, and compare with results of 
an  accident reconstruction performed several years ago. 
In that reconstruction analysis, the pre-impact motion 
was semi-quantitatively performed by frame-to-frame 
analysis. HVE’s EDSMAC4 solver was used to simulate 
the collision sequence.  
 
Figure 15 compares selected output frames from the 
onboard video, and the corresponding reconstructed 
views by VARS and EDSMAC4.  In our experience, the 
matching can be achieved to allow for overlay of the 
reconstructed video with the accident video. 

Figure 16 compares the speed time history of the VARS 
and the EDSMAC4 analysis with the onboard 
surveillance system of the subject vehicle. Good 
matching of the speed profile was achieved up to the 
impact with the guardrail.  In the EDSMAC4 analysis, a 
rigid barrier was used to model the guardrail, which 
resulted in a velocity change at impact over a shorter 
duration as compared to the onboard speed data.  

Figure 15. Selected output frames from (a) onboard video, 
and the corresponding reconstructed views by (b) VARS, and 
(c) HVE EDSMAC4 simulation. 

 

 

 
Figure 13. Driver input time history as calculated by HVE 
using the VARS keyframes (Path Follower), and adjusted 
to improve the matching of vehicle motion in VARS 
(Driver Controls).  
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Figure 14.  Comparison of VARS vehicle motion with that 
calculated by HVE using path follower on VARS keyframes 
(Path Follower), and adjusted to improve the matching of 
VARS vehicle motion (Driver Controls). 
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Reducing the impact stiffness of the barrier would have 
resulted in better matching with the speed data post-
impact. 

 
The predicted vehicle paths by VARS (green line) and 
EDSMAC4 (white vehicle depicted in 1 second 
intervals) are compared in Figure 17. The semi-
quantitative estimate of the pre-impact position follows 
the calculated VARS path well.  In future HVE analysis, 
use of VARS to establish pre-impact vehicle motions 
would further improve the overall accuracy of the 
simulation. 

 
Conclusions 
 
This study presents Video-based Accident 
Reconstruction System (VARS), a software tool 
developed for the motion analysis of traffic accidents 
captured by vehicle and land surveillance cameras. 
Using a photogrammetric approach for a single video 
input and a point cloud of the environment, the VARS 
software tool has demonstrated its capability to produce 
an accurate vehicle travel path and its corresponding 
speed profile. The VARS software is capable of 

reproducing onboard video views, while matching 
vehicle motion data as measured by a GPS-based data 
logger.  
 
The VARS analysis specializes in recreating the 
kinematics (geometry) of vehicle movement. Coupled 
with vehicle dynamics software such as HVE, the 
VARS/HVE combined analysis is capable of recreating 
vehicle dynamics in reconstruction of real world 
accidents. We have demonstrated that this can be 
accomplished through use of the VARS output as input 
to vehicle dynamics simulation tools. 
  
In general, the extracted speed accuracy depends on the 
alignment of the camera poses in the keyframe, density 
of the keyframe segmentation, video frame rate, and 
vehicle movement between the keyframes. Speed data 
could also be extracted from the interpolated frames to 
provide higher sampling density and averaged across 
multiple frames to further smooth the noise. 
 
The development of VARS is ongoing. The functional 
features implemented to date have been used 
successfully in the analyses of real world accidents. The 
current implementation supports a single video input. 
Future development will combine video data from 
multiple cameras to enhance the ability to accurately 
recreate vehicle movement. Additional future 
development includes improvements in areas such as 
camera calibration and user interaction with point cloud 
data (e.g., view navigation, keypoint selection).   
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