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SECTION 1. INTRODUCTION

This document is a comprehensive report on a number of tasks related
to several versions of the CRASH computer model of automobile colli-
sions. Wilson Hill has performed a series of activities designed to

maintain, debug, and update several versions of CRASH.

Work has been performed upon the CRASH2 production program as avall-
able under user number C0162 at MCAUTO in March 198C. A test pro-
gram titled CRASH2A was also accessed in the spring of 1980 at |
MCAUTO under the same user number. This test program was subjected
to extensive dubugging and validation during the course of the con-
tract. In December 1980 the accumulated corrections, additions and
improvements to the CRASH2A working files were assembled and edited
into a new set of source files which became CRASH3, This version

of CRASH3 was delivered to MCAUTO and installed by MCAUTO under user
number C0162. The installed version of CRASH3 was tested by Wilson
Hill prior to its release for field use on January 1, 1981. After
January 1, several minor changes were outlined and coded by Wilson
Hill, and passed to MCAUTC for installation in the production ver-
sion of CRASH3. Each change was tested and verified in the produc-
tion program by Wilson Hill. Staff at MCAUTC added an optional
metric unit conversion capability to CRASH3, which Wilson Hill tested

and verified.

The tasks performed began with the verification of earlier revisions

to the CRASH2Z code. A complete series of test runs using the 12

RICSAC staged collisions as input data was conducted to compare results
between CRASHZ and CRASHZA. Coding errors were identified and cor-
rected in both models. Analytical problems in some of the CRASHZA

calculations were identified and resolved.
Concurrent to these efforts, a new set of crush coefficients (A, B,
and G values) for the CRASH3 damage analysis was selected from

several new sets made available by NHTSA proiject SRL-16. The new
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crush coefficients were tested, evaluated and revised before being
inciuded in the CRASH3 source code delivered to MCAUTO.

Two potential enhancements of the CRASH3 model were investigated
under this contract. Raymond R. McHenry, author of the coriginal
CRASH model, evaluated a proposed braking assesgssment algorithm, An
analysis of the prospects for incorporating a model of utility pole

collisions into CRASH3 was prepared by Wilson-Hill,

All changes and corrections to the CRASH3 program described in this
document have been included in the new CRASH3 program code. In
addition, the CRASH3 User's Guide and Technical Manual prepared by
NHTSA in the fall of 1980 was reviewed and edited to reflect the

current status of the program.

The results of the tasks which have been performed are included in
the following format. The next section reviews the tasks as enumer-
ated in the contract, summarizes the results of each task, and
serves as a quide to the location of relevant documentation in other
parts of the report. Section 3 reviews the program changes which
were made in developing the current production version of CRASH3
from the CRASH?A test program, The procedure and results of testing
new A, B, and G cocefficients for the CRASH3 damage analysis are

described in Section 4.

Section 5 presents several possibilities for integrating a pole
collision model with CRASH3. An evaluation of a braking assessment

algorithm constitutes Section 6.

In Section 7 some ideas for improvements to the CRASH3 model which

have evolved during the course of the present effort are listed.

Appendix 1 of this volume illustrates an input validity check per=-
formed by the CRASH3 program, and mentioned in Sections 2 and 3 of
this report. Reports on Tasks 3 and 4, which were delivered pre-
vicusly, are included as appendices in order to form a comprehensive
report.

1-2



There are two succeeding volumes to this one which present a coliec~
tion of test runs executed on various versions of the CRASH program.
This collection includes a complete series of the RICSAC test cases

‘on the moét recent CRASH3 release.

Throughout this document, a significant degree of familiarity with
the CRASH model and associated terminology are presumed. Readers

lacking such familiarity should consult other material, especially
the CRASH3 User's Guide and Technical Manual which was produced by

NHTSA in the fall of 1980, The User's Guide contains several
references to other helpful materials, A listing of the CRASH3
source code would also be of value in interpreting parts of this

report.






SECTION 2. SUMMARY OF TASKS AND ACCOMPLISHMENTS'

This section summarizes each of the tasks enumerated in the cdntracﬁ}
describes the results cof each task and serves as a guide td-thé-
location of the documentation of each task within this report. I&

is organized by the numeric and alphabetic ordering of taékﬁlperﬁ'

formed under the contract,
2,1 TASK 1

This Task consisted of verifying coding changes to CRASH2 which
were identified by Wilson Hill Associates as part of some prior
work on the CRASH2 model, The two areas affected by the changes
were input validity checking of vehicle damage index (VDI) codes
and batch processing using stored, on-line disk files, Both sets
of modifications were found to be in place in the CRASHZ progrém
installed at MCAUTO. The VDI scanning subroutine from CRASH2 was
modified as part of Task 2, tested, and installed in CRASH3 files _
which were delivered to MCAUTO in December, 1980, Appendix3i'con“ --h
tains a demonstration of the VDI {now termed CDC) scanning”routiné
from the current CRASH3 production program installed at MCAUTO. The
batch processing option was eliminated from CRASH3 as part.of TASK 7.
This was done in response to a lack of user demand for batch pro—

cessing, and to make CRASH3 more economical to use,
2.2 TASK 2A

The subject of this Task was a collection of cases run on CRASH2Z
which showed different results when the rerun option was selected,
but only the title changed. The cause of this problem in all CRASH2
runs examined was found to be SUBROUTINE PROXIM, an algorithm which
checks the entered impact positions of the two vehicies in.order to
determine if the borders of the vehicles would be overlapping, 'Such;
overlap could reflect an error in the input data, or it could result

from the use of standardized vehicle size parameters from é_Loqkup




table in the CRASH program. This overlap problem only affects CRASH
when it is used as a preprocessor for the SMAC program, because

CRASH calculations depend on the location of the vehicle center of
gravity only. The rerun problem did not affect CRASH3 results,
because PROXIM was not used in the CRASH3 program. The implemented
solution to this problem is to invoke the PROXIM verification and
position adjustment logic only when CRASH is being used to generate

a SMAC input'fiie. This system is used in the present CRASH3 program.
installed at MCAUTO. The requisite changes appear in the program

code, and are described in Section 3 of this report,
2.3 TASK 2B

This Task involved the analysis and correction of a coding error
documented in Volume IV, Appendix A of the RICSAC final report. The
error resulted in a gross overestimation of spinout trajectory path
length in those cases exhibiting a curved, non-skidding path. The
‘presence of this error was confirmed in the CRASH2 and CRASH2A
programs. A solution to the problem'was developed, coded, and suc-
cessfully tested. This solution involves changes to subroutines
START2 and SPINZ which are in the present program code, and described
in -Section 3 of this report, The proposed solution in the RICSAC

report is no longer necegsary.
2.4 TASK 2C

The CRASH3 program was modified to accept CDC (formerly VDI) codes
conforming to the J224MAR8S0 standard for this Task. The changes

were made to subroutine CDCSCN in the CRASH3 code. Section 3 de-
scribes the changes to CDCSCN, which have been tested and installed

in the production version of CRASH3 at MCAUTO. Appendix A illustrates

the operation of the CbBC scanning logic,
2.5 TASK 2D

This Task identified a rerun-connected bug in the tradjectory simula-

tion logic of the CRASH program to be found and fixed. No causes
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of unexpected rerun alteration of results were found in the trajectory
simulation code. Other sources of improper rerun chaﬁgeé were found
to be at fault in all cases examined. These other sources of rerun
problems hHave been identified and fixed, The requisite changes

appear in the CRASH3 program code and are described in Section 3 of

this report.
2.6 TASK 2E

For this Task, all possible combinations of input describing skidding, .
path curvature, rotation, and end of rotation points for each vehicle
were examined for the occurrence of fatal FORTRAN execution errors.
during CRASH3 execution. Several sources of problems were identified
and repaired. The present code is believed to be free of such poten~
tial execution errors which occurred when certain combinations of
input data appeared. The corrections have been tested and installed

in the CRASH3 program code. Section 3 describes these changes.
2.7 TABK 3

Task 3 consisted of activating the sideslip angle feature in the
CRASHZA test program installed at MCAUTC, and of performing an exten-
sive series of test runs to compare CRASHZA and CRASHZ2., Many prob-
lems surfaced during the performance of these test runs, which have
served as the impetus for nmuch of the subseguent work on this con-
tract. The results of Task 3 were submitted as a separate deliver-
able item in April 1980, This document is included as Appendix B

to Volume I of this report. The complete collection of test runs
executed during the completion of Task 3 appears in Velumes II and
III of the final report.

2.8 TASK 4
Task 4 identified a series of suspected programming errors in the
CRASH? code. All of the items were analyzed and corrected, if

necessary. The results of this work were documented in a separate
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 deliverable item on June 20, 1980. This document 1is included as
Appendix C to Volume I of the final report, Any errors in the
CRASH3 code which parallel the CRASH2 findings have been identified
and corrected as well. Such corrections are present and have been

tested in the current CRASH3 program code.
2.9 TABK 5

_Thls Task mandated the installation and testing of updated A, B, and

G damage coefficient tables in the CRASH3 program. All tables values
supplied by NHTSA Project SRL-~16 were installed and tested in the
CRASHB program A final set of A, B, and G values Wés selected

using the test results and installed in the productlon version of
CRASH3,. now available at MCAUTO. Section 4 of this report documents
the damage table testing. Some changes to the input routine QUIZ,
described 1n Section 3, were made to support new vehicle categories
added to the A, B, and G tables. The test runs of CRASHB in Volume II

of the final report were made using the new damage coefficients.
2.10 TASK 6

This Task specified the incorporation of a pole collision reconstruc-
tion algorithm into the CRASH3 program. Since the pole collision
model was not received in a readily incorporable form, and since
NHTSA had not reached a final decision on the optimal arrangement

of the two programs, the Contract Technical Manager directed that a
report be prepared which explores the alternatives for joining a

pole model to the present CRASH3 program. This report is included

as Section 5 of Volume I of the final report,
2.11 TASK 7

A revised version of CRASH3, based on CRASHZA, was produced for this
task. The coding changes were made to a work file and tested,

prior to delivery of the source code files to MCAUTO in December
1980.. The "CDC only" option was retained at the direction of the

Contract Technical Manager, pending further discussions on what
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damage data should be required in all cases. Section 3 describes
the coding changes which are present in the source code delivered
to MCAUTO. Volume IT of the report centains test runs of the produc—

tion version of the CRASH3 program.
2,12 TASK 8

This Task specified an examination of the CRASH2 and CRASHZA trajec-
tory simulation results, focusing on possible degradation of results
between CRASH2 and CRASH2A, The RICSAC cases served as test data.
Coding changes were made to remove executioh errors, improve compu-
tation of error terms, and reduce the incidence of time out coadi~-
tions in the CRASH3 program results. These changes produce simula-
tion results and error-free execution for all of the RICSAC cases,
but there is considerable progress remaining to be made in meeting
the established convergence criteria. The coding changes pursuant
to this task have been tested and are present in the current CRASH3
program code. These changes are described in Section 3 of the final
report. Section 3 also includes a summary o0f the latest CRASHS3
trajectory simulation results. A complete series of RICSAC runs on
CRASH3 with the trajectory simulation option appears 1n Volume IT

of the final report,
2.13 TASX 9

This Task was an evaluation of a braking assessment algorithm pre-
pared by CALSPAN FIELD SERVICES, INC. under contract number
DOT-HS~5-01230. Raymond R, McHenry, of McHenry Congsultants, Inc.,
prepared an analysis of the algorithm which appears as Section & of

this report.
2.14 TASK 10

This final report, containing a description of results achieved and

listings of test runs performed, constitutes the product of Task 10,



A source code listing of the CRASH3 program produced by this con-~

tract effort will be supplied to the Contract'Technical Maﬂaqer“



SECTION 3. CRASH2A TO CRASH3 PROGRAM CHANGES

This section describes the changes made to the CRASH2A test program
in the process of converting it to the CRASH3 production program
now installed at MCAUTO. Some chahges were'désigned'to prevent
execution errors discovered while testing the CRASH2A code. Othef'.
alterations involved analytic procedures which were judged defective
due to unacceptable results produced on test runs,:_A&ditibnﬁ were
made to support new features of CRASH3 such as the Separat;bn of
vehicle crush stiffness and vehicle size degcriptors, permitting a
variable relation between these parameters. 'Modificatiohs_weré
also performed to update user warning and error messages and to

improve the ocutput format.

The starting point for the revisions listed below is the test program
CRASH2A. The elements of CRASH2A are best documented in the firal
report to contract number DOT-HS-6-01442, entitled "Revision of the-
CRASH2 Computer Program," and authored by McHenry and Lynch, There
is also an unpublished CRASH2A user's guide which may be of some
value. Other CRASH2 documents should be consulted for more informa-
tion on the basic structure and subroutine functions of the CRASH

model. The major outline of the program has remained unchanged. -

All of the changes listed here have been coded, tested, and installed
in the CRASH3 produétion program available at MCAUTO, It would be
valuable to consult a source code listing of CRASH3 in concert with
this document. The CRASH3 User's Guide and Technical Manual pub-~
lished by NHTSA has been updated to correspond to all program modl-

fications.

Several global changes to the CRASH program are described next, This
is followed by a discussion of the revisions made for each subroutine
which was altered. The subroutines are treated in the approximaté

order that they are used in a typical execution of CRASH3,.

[#%]
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3.1 GLOBAL CHANGES

Throughout the CRASH3 program éode, the term "VDI" has been replaced
with the term "CDC," to reflect the most current NHTSA terminology.
The term was changed in all occurrences, including input qﬁeStion
text, program messages, variable names, subroutine 1abe134’sour¢e
code comments, and output listings. This comprehensive change should

preclude future inconsistency and possible confusion.

The global common block labeled CRASH was expanded in evexy CRASH3
routine which includes it. Two variables were added to the common
block. The scalar variable JSUST was added to flag those cases where
sustained contact between the vehicles is indicated by the user. The
vector JSTF(2) was added to store the stiffness category specified
by the user for each vehicle. UNearly all subroutines within CRASH3

contain the CRASH common block which was revised.

3.2 MAIN PROGRAM

The CRASH3 main control program was edited to remove the code sections'.
which were used to process the Batch and Document options, since
these options are not included in CRASH3, The main program does not
expect the value of the variable MENU, which indicates the option
selected by the user, to exceed 5. The value 5 denoted Batch in
CRASH2, it now denotes SMAC.

3.3 SUBROUTINE OPTION

The message output by the option selection subroutine no longér in-
cludes the BATCH or DOCUMENT options. If BATCH or DOCUMENT is
entered by the user, an error message is printed. The code for
processing BATCH and DOCUMENT requests has been removed, The value
assigned to the variable MENU when the SMAC option is selected has
been changed to 5, which corresponds to the expectation of the main

program,



3.4 SUBROUTINE QUIZ

Two new guestions have been added to the QUIZ input routlne,_ Dnél“
guestion asks the user to specify a stiffness category for each
vehicle in the collision. The guestion has no default valge, and
requires a valid response in order to. continue with a CRASH3 TN .
The valid responses range from 1 to 11, and include'nine.diaSSQS‘

of vehicles and two types of crash testing barriers. The~CRASH3

User's Guide and Technical Manual displays the text of this gues-
tion and explains how to answer it. The stiffness category gues-
tion is number 5 in the CRASH3 guestion segquence. The previous

guestion 5 ig now labelled question 6.

Some of the vehicle stiffness categories contain incomplete emmlzlw"
cal damage coefficients., These categories can only be used WLLn ‘
certain collision types, such as frontal, and not with others,,suéh‘
as side damage. To support this arrangement, logic has been ﬁﬁd&&f '
which accesses a lookup table stored in a new arxay=labelle&fi§RSH;fnk
ICRSH has an element corresponding to each area of a Vehicie %%roﬁ%,:f
side, or rear) for each stiffness category. The element cf.ICRSH.
is set to value 1 if crush stiffness data exists for the specifie&_..
vehicle area of the specified stiffness class, and to:valqg @:if
data does not exist. Thus, ICRSH serves as a table of damhgé.ﬁasés3
for which emplrlcai coefficients are available, The new loglc -
accesses the CDC supplied by the user to determine the venlcle area

which has been damaged.

If the user specifies a vehicle area and stiffness class foxr which
there is no data, an explanatory message 1s printed'and the stiff-

ness category question is repeated,

The user's valld responses to the stiffness_quesﬁion are stare& as
integer values in the array ISTF(2) which has been added to the '
common block CRASH. '

The vehicle size and type categories cbtained in guestion number 2

of the QUIZ routine have been changed to correspond to the new. stiff-
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ness categories, However, there is no size and weight data avail-
able for stiffness classes 8§ and 9. To handle this situation,

logic has been added which intercepts attempts to specify a size
ciasa of 8 or 9, and directs the user to select the most appxogrlate

value from categories 1 through 6

Question numbers 5-7 from CRASH2A have been renumbered 6-8 in CRASH3.
This was done to create space for the new stiffness guestion in the

early part of the input sequence.

The sideslip angle gquestions which were suppressed in CRASH2ZA have
been reactivated in CRASH3. Question 9 asks whether sideslipping
occurred, and question 10 collects the values i1f guestion 9 is an-~

swered "ves."

The second new qguestion added to QUIZ is numbered 11l. This guestion
asks the user whether a sustained contact spinout phase took piace
during the collision. The long form text of the guestion reviews

the definition of sustained contact, which is explained in the CRASH3
User's Guide and Technical Manual. This questlon was added to replace

an automatic test for sustained contact which was ¢mplemeﬁted in
CRASH2A but found unreliable during testing with the RICSAC casas.
RICSAC case 3 activated the automatic sustained contact calculation,
but the diagrammed spinout paths.in the RICSAC report do not bear
cut this result. Other RICSAC cases such as numbers 2 and & appear
much more likely to have exhibited sustained contact, yet the auto-

matic test was not activated when these cases were rul,

The user response to the sustained contact guestion is YES or NO,

If YES is entered, the variable JSUST is set equal to one (1) and
serves to flag the sustained contact situation. If the responsé is
negative, JSUST is assigned the value zero (0). The default response

to this guestion is NO.

Both new questions in the QUIZ routine are coded in a style and
format analogous to the existing guestions. Documentation has been

written for the CRASH3 Ugser's Guide which explains and illustrates
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the new questions, The directing labels for backspacing and asking
related questions on a rerun have been updated to handle the new

arrangement.

If the sustained contact gquestion is answered affirmativelyf ﬁhe
trajectory simulation question is not presented, énd'the'traﬁectory
simulation not performed, This is so arranged because a sustained
contact spinout does not satisfy the assumptions on which the tra=-

jectory time history simulation is based.

The long form text appearing in guestions 39, 42, 45, and 48 was
replaced with new language specifying the inclusion of induced damage

in damage width measurements. This change was made to conform to

the most recent NHTSA instructions and to the CRASHI User‘s'Guide and

Technical Manual.

3.5 SUBROUTINE QUIZ2

Subroutine QUIZ2 was deleted from the CRASH3 code since it was in-
cluded to perform functions only required by the BATCH option. The
BATCH option is not present in CRASH3, '

3.6 SUBROUTINE CDCSCN

The CDC scanning subroutine was updated to handle CDC entries made
in accordance with the J224MAR8C standard. Additional chakacters
"K* and "U" are now acceptable values for column 6 of the CDC. This
change has no impact on other parts of the CRASH3 program, The
clock directions for angles of force, which previbusly ranged. from
00 to 12, range from 00 to 22 under the new guidelines. This change
allows for coding a shift in the entire vehicle end structure in
the CDC. CRASH3 does not presently use the structure shift infor-
mation, and is set up to decode clock directions from 00 to 12 only,
Subroutine CDCSCN has heen modified to validate the CDC codes accord-
ing to the new classification system, and then convert them to the

appropriate value within the range of 00 to 12.
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3.7 SUBRCUTINE DAMAGE

Subroutine DAMAGE has been modified to perform energy calchatiQﬂs '
using A, B, and G values selected by stiffness category r@ther.tﬁan-
wheelbase category. A stiffness category for each vehicle is stored
in the vector JS8TF(2), located in common block CRASH and s£t byﬂsub—
routine QUIZ, ' E

The logic which bypasses damage computations for barrier QlasSifica»
tions was not correct in CRASH2A. Moving barriers were handled
correctly, as class 7, but fixed barriers identified as class 8
failed to bypass the energy computations and caused FORTRAN execu~
tion errors when tested. Apparently CRASHZA was never tested with

fixed barrier collisions.

In CRASH3 the barrier classification numbers are 10 for moving
barriers, and 11 for fixed ones. The damage logic has been corrected

to bypass energy computations for both types of barriers.

New A, B, and G values are installed in subroutine DAMAGE. The
testing and selection of these values is described in Section 4 of

this report.

CRASH2A featured a moment arm consistency check which comparsed the
sign of the sum of the initial and separation angular velocities to
the sign of the moment arm, H, of the damage force., CRASHZA was
structured so that unequal signs led to an abrupt, undocumented,
hidden exit from the CRASH2A program. This test had other problems
as well, Since initial yaw velocities are always zero {0) in the
present CRASH3 model, and the separatibn yaw velocity is not deter-
mined until after the damage analysis is complete, one of the two
compared values was always zero in the CRASH2A arrangement, The
only exception to this could occur on a rerun, when Se@aration

angular velocities would persist from the previous run.

CRASH3 improves the utility of this test by rearranging it to compare

the user entered direction of rotation with the damage moment arm,
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since the user supplied value is present prior to the damage analysis.
Any inconsistency of direction, indicated by opposite signs for the
two indicators, generates a warning message which appears imnediately
and is repeated with the final printout. Execution of the program is
not terminated in these cases because the test is not believed to be
foolproof. Borderline cases with small moment arms and collisions
characterized by certain intervehicle dynamics can lead to erroneocus

results from the moment arm test.

The computation of the moment arm in rear end damage cases was dis~
covered to be incorrect in CRASH2A. Apparently, the use of negative
values for distances measured toward the rear of a vehicle was over-
looked when the moment arm computation was redesigned for CRASHIA,
This problem has been rectified in CRASH3,

The correction factor for tangential force, in cases with damage
produced by a direction of principle force not normal to a yvehicle
surface, was found to be miscalculated in CRASH2A. The logic in
CRAGSH2A was retained from CRASH2, which expected a value in the
range of + 90°. However, the PDOF angle was used directly in
CRASH2A, with a range of 0-360Y, In a series of program steps,
CRASH2A checks the absolute magnitude of the angle, and applies the
maximum energy correction factor to all angles greater than 750a
Thus, the maximum correction would be applied in a 1800, normal,
rear collision where no correction is warranted. This would distort
the results by a factor of 13.9. This problem was corrected by
measuring the tangent of the PDOF angle rather than the angle itself.,
With this arrangement the periodicity of the tangent function pro-

duces a proper result in CRASH3.

Changes were also made to bring the maximum value of the correction
factor in line with the documented value of 13.9, the tangent
sguared of 75° . CRASH2A could erronecusly pass a value of 1€=9ﬁ
while the correction factor reaches the specified maximum of 13.9

only in CRASH3.



3.8 SUBROUTINE START2

In CRASH2A, subroutine START?2 contained many repetitive code segments.
For CRASH3, the subroutine was rearranged in a loop format, with one

pass performed for each vehicle.

Several complications of the treatment accorded to sideslip angles in
the CRASH2A program appeared during testing performed after the side-
slip angle coding was activated as part of Task 3. These problems
were discussed with Thomas Noga of NHTSA and Raymond McHenry of
McHenry Consultants before arriving at the following operational solu-

tion, which was installed in the CRASH3 program.

If the angle between the vehicle velocities at impact exceeds ten
degrees, a linear momentum solution is produced which incorporates
sideslip angles without mishap. If the velocity vector angle at

impact is less than ten degrees, the linear momentum sclution is

i

bypassed and Supplanted by what is termed the "axial solution.
Basically, the axial solution defines impact speeds ag a difference
cf the damage based total velocity changes and spinout derived sepa-

ration velocities.

In CRASH2A, the angular discrepancy which can occur between the axiai
form impact velocity and the user entered impact heading is considered
te be a computed or “adjusted" sideslip angle. CRASHZA repeats the
impact speed calculation using the derived sideslip angle. This
adjustment procedure can be iterated several timéé, until two suc-
cessive sideslip values are equal. -In RICSAC test case number 4 the
solution form switched from axial to linear momentum due to sideslip
angle adjustments. In cases for which the axial solution generates
negative impact speeds, of which there are several among rear-end
collisicons with one stationary vehicle, the sideslip angle adjustment

procedure becomes grossly inappropriate.

The solution adopted by CRASH3 to this problem is to bypass sideslip
angle adjustment procedures unless the user specifies that sideslip~

ping occurred in response to a QUIZ input question, If no sideslipping
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is specified, no adjustments ocecur. In these cases requiring the
axial solution form, the lateral velocity chande is presumed equal

to the separation lateral velocity.

If the user specifies that sideslipping occurred, the enterad or
default sideslip angles are adjusted when the axial solution is
invoked. However, only one adjustment attempt occurs, and & warning

message is displayed to the user.

A section of CRASH2A code which was designed to change the entered
direction of principle force in order to force agreement between

the damage based lateral velocity change and the spinout based
lateral separation velocity, and hence create zero'slip anglies when
none had been specified, was removed from CRASH3. The procedure did
not prove effective, and it was considered improper to alter user

supplied data based on an unreliable test.

A call to subroutine OBLIQUE in cases regulring an axial foxm 501u~
tion was removed in the transition from CRASH2A to CRASH3. The
excised call had no function, as it was an unnecessary vestige of

the as yet unsuccessful angular momentum solution.

START2 was also modified to appropriately measure non-skidding curved
path lengths. In CRASH2A, all non-skidding paths were assumed to be
straight lines. CRASH3 supports straight or curved, skidding or non-

skidding trajectories.

3.9 SUBROUTINE SPINZ

An error in the computation of curved path lengths was corrected,
In CRASH2A, a curved, non-skidding path produces an erroneocus path
length computation in SPIN2. Essentially, the program measures the
entire circumference of the circle instead of correctly identifying
a zero distance between two collocated points, This outcome was
raevised in CRASH3 to assure that appropriate path lengths are com-
puted. If a vehicle does not skid, then the skidding path length
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should invariably be zero. Since START2 now computes the nonmskiddiné_
path around a circle if it is curved, SPIN2 can be separated from this
function and restricted to the modelling of the skidding portion of
the spinocut. |

The changes made to subroutine START2 and SPINZ, taken together, re-
move any need for changes similar to those listed in the RICSAC final
report, Volume IV, Appendix A. The error described there does not
occur on CRASH3 runs, and sco no additional data commons ahd associated

statements are required.

The automatic test for sustained contact between vehicles during the
spinout phase of a collision was removed from SPIN2. This tast was
found unreliable, and was replaced by a specific user input to the

question of whether sustained contact occurred.

3.10 SUBROUTINE USMAC

All known execution errors resulting from the computation of error
terms were precluded by appropriate code changes. Furthermorei.the
End of Rotation (EOR) error terms are zeroed out when no EOR data
1s entered by the user. The EOR adjustment factors are also digre-
garded when EOR data is unspecified or unavailable. These chanyges
bring CRASH3 into closer coordination with the tra;ectory sxmulatlon

documentation that is available.

The maximum time allowed for a vehicle to come to rest during an
iteration of the time history simulation has been increased from 8
to 16 seconds. A limit of 16 seconds pfeVents timing out on any of
the RICSAC cases,

The results obtained from test runs of the trajectory simulation
after effecting these changes are displayed in Figure 3-~1. Unfor-
tunately, many of the time out and execution error results from

earlier runs have been converted to ocutcomes of nonconvergence,
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Purther modification of USMAC is necessary to improve thig situa=

tion,

3.11 SUBROUTINE PRINT

The error and warning message section of the printout was revised and

updated. The CRASH3 User's Guide and Technical Manual contalins

examples and explanations of the current warning messages.

The printout has been changed in CRASH3 to include the sidesliip angles
for each vehicle. These values are labelled BETAL and BETAZ, The
BETA values appear in the collisicn data section of the long form
output of CRASH3. | |

When no linear momentum calculations have been performed, no linear
momentum output labels appear in CRASH3. In CRASH2A, the linear
momentum headings are included with zero values output when the
calculations have not been executed. A similar change was nade to
suppress printing of the impact speed headings when no impact speeds
are estimable, such as in any case without trajectory data.

An error in the linear momentum speed change values for certain cases
was identified and corrected. CRASH2A was subtracting an inappro~
priate value when determining the erroneous values. Thisg problem

has been rectified in CRASH3.

3,12 SUBRDUTINE SMACIN

In CRASH2ZA, SMACIN outputs certain undefined variables for the impact
positions of wvehicles 1 and 2. In addition, improper unit conversions
are applied to some of the other initial condition paramesters, These
parameters form input data on cards two and three of the SMAC input
file. This situation appears to have resulted from a failure to up-
date subroutine SMACIN when other changes were made during the deve-~
lopment of CRASH2A, CRASH3 has been modified to assure that the pro-
per variable names are in place with appropriate conversion factors

applied,



SECTION 4, -INSTALLATION AND TESTING OF A, B, AND G VALUES FOR
DAMAGE ANALYSIS o

This section presents the results of testing performed on some new
sets of values for the A, B, and G coefficients used in the damage
based analysis of the CRASH3 program. The A, B, and G values are
empirically derived from the relatioﬁ_of vehiéle crush damage assess-
ments and measured speed changes in staged collision tests, In the
CRASH3 program, the damage coefficients are used to estimate speed

changes when vehicle crush dimensions have been collected.

The first set of new A, B, and G values tested during this contract
was obtained from the September, 1980 SRL-16 progress report. The
report included several sets of damage coefficients. One set was
derived from staged collisions by using the CRUSH computer program;
which outputs A, B, and G values based on collision damage and speed
change measurements, A second set of coefficients was presanted which
was developed by modifying the CRUSH-based coefficients to produce a
more reasonable result in low speed collisions, according to the SRL
report. The exact method of adjusting these A, B, and G values was

not described in the report.

Both the CRUSH-based and the adjusted values for A, B, and G appear-
ing in the SRL-16 September, 1980 progress report were tested on

the CRASH3 model. Each set of values was substituted for the exist-
ing values in the CRASH3 subroutine DAMAGE, the program recompiled,
loaded and tested, The test input data wés drawn from the RICSAC
cases, twelve staged collisions involving 24 vehicles., The results
of these test runs are displayed in Figure 4-1, along with some |
summary comparisons cf the performance of each set of coefficients.
In Figure 4-1, “NEW" refers to the SRL CRUSH-based results, while
NEW (EST) refers to the SRL adjusted values for A, B, and G, The
CRASH2 results, based on the old damage coefficients, are taken

from the RICSAC.final report.



It should be noted that some of the cases appearing in the RZCSAC
report were executed on CRASH2 using non-collineaxr angles of prin-
ciple force in the input data. When these force angles are corrected,
based on the measured force angles listed in the RICSAC report, the
results differ significantly in those cases which involve the correc-
tion factor, 1 + tan2é ; applied to obligue collisions, The discre-
pancies caused by this wvariation in input data are apparent in the
damage coefficients test summaries for the RICSAC cases which are
included later in this section. In those summaries, the differences
appear between the results from CRASH2 in the RICSAC final report‘.
and CRASH2 as tested at MCAUTO in April, 1980.

The new and adjusted coefficients produced by SRL showed the most
significant improvement on those cases involving rear end damage,
For side impact collisions, the older table values for A, B, and G

seemed to produce better results.

Based on these findings, a hybrid set of coefficients was installed
in CRASH3, using SRL~generated values for front and rear stiffness,
but retaining CRASH2 coefficients for side damage calculations.

In November 1980, SRL supplied some new values which were refine-
ments of those made available in September. These values were in-
cluded in the hybrid damage coefficient table described above, and
became the final values installed in the CRASH3 program. The results
labelled "CRASH3" in the accompanying damage test summaries &re

based on this set of values for A, B, and G.

SRL also calculated stiffness coefficients for some new categories
of vehicles not handled by CRASH2. These new categories ware pickup
trucks, vans, and four wheel drive (4X4) wvehicles in the September
1980 report. Later, some values for General Motors XwBody”cars ware

supplied,

Each of these new sets of coefficients was tested aqalmbt a Lollectlon

0of staged colllslon data supplied by the Contract Technical Manager
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from a variety of sources. Since CRASH2 could not be used for com-
parisons, the new categories were evaluated on the absoclute errors

in estimated speed changes compared toc measured results. The results
of these tests appear in the damage test summaries included in this

section.

Based on these test runs, the pickup, van, and X-Body coefficients
were selected for inclusion in the CRASH3 program. New categories

of vehicle stiffness were established to handle thesge cases.

The A, B, and G values for 4X4 vehicles did not produce satisfactory
results in several test cases, In each of these cases, better
results were obtained by using the ceoefficients developed for vans.
The A, B, and G values for vans produced more accurate speed change
estimates in every frontal impact of a 4X4 vehicle. Due to this
outcome, the 4X4 coefficients were discarded. Four-wheel drive
vehicles are now included in category 7, along with vans, in the

present CRASH3 program.

A serles of fourteen additional tests using 1980 model vehicles was
run on the CRASHI program as an additional checkout procedure.
These tests span a variety of vehicle classes and include front and
rear barrier impacts. The CRASH3 estimates of speed changes were
generally good, with moderate errors of underestimation most fre-

gquent.

Figure 4-2 is a guide to the abbreviations for sources of A, B, and
G values which appear in the accompanying test reports., Figure 4-3
lists the stiffness category codes. These are the current CRASH3
vehicle categories, with the exception of the 4X4 classification,

which was merged with class 7 {(vans) as detailed above.

The numeric values for A, B, and G now installed in the CRASH3
program are listed in the CRASH3 User's Guide and Technical Manual,
in Section 8, Table 8-2.



LABEL

SOURCE

CRASH3 Program as released for field use, 1/1/81

CRASHZA Experimental Program as tested in
April 1980

CRASHZ-R CRASHZ results as reported in RICSAC
final report

CRASH2-M CRASHZ results from production program
at MCAUTO, Apxril 1980 '

CRASHZ2-R,M Refers to identical results from CRASH2-R
and CRASH2-M

SILR~1 A, B, G values from SRL-16 progfess raport,
September 19280

SLR-2 Revised A, B, G values from SRL 16, by
phone, November 1980

FIGURE 4-2,

KEY TO A, B, G SOURCES IN SUMMARY REPORTS




LABEL

4X4

DESCRIPTION

Minicar
Sﬁbcompact
Compact
Standard
Full Size
Large
Vans
Pickup Trucks
X-Body Cars

Four Wheel Drive Vehicles

WHEELBASE RANGE (INCHES)

80,9 - 94.8

94,8 - 101.6

101.6 - 110.4

110.4 - 117.5

117.5 ~ 123.2

123.2 - 150.0
109 - 130

FIGURE 4-3. KXEY TO STIFFNESS CATEGORIES




Appendix D includes summary reports of all damage test cases
executed during the course of A, B, and G value testing, The de~-
scription and damage data are reported for each vehicle, along
with whatever speed measurements were available, - The estiméteé
speed change ( AV) and source of the A, B, and G values for each
test appear at the right end of thé table for each ﬁehicle, Sub*
sequent tests are listed on succeeding lines, with any differencés
in input data or A, B, and G values displayed. Items for which no

changes were made remain blank on successive lines,






SECTION 5, POSSIBILITIES FOR INTEGRATION OF CRASH3 AND A POLE
: ' COLLISION MODEL

This section presents an analysis of the prospects for incorporating

a reconstruction technigue for collisions between motor vehicles

and vertical poles intc the CRASH3 model of automobile collisiané.
The pole reconstruction methodology under consideration was.develbped
by Southwest Research Institute (SwRI) under Contract No. DTNE22-80-
C-07014 from the National Highway Traffic Safety Administration,
U.S. Department of Transportation. This reconstruction methodology
was documented in a final report to the contract mentioned above,

and that final report has served as the source of information dn

the pole reconstruction procedure for the preparation of ‘this

analysis.

The SwRI pole collision model divides a collision between a vehicle
and a pole into three sequential phases, estimates the veiécityﬁf
change attributable to each phase, and sums the components from

each phase to derive a value for the total velocity change resulting
from the pole-vehicle interaction., The SwRI model re@uireg aS‘input‘
a collection of data descriptive of the poie, an estimate éf the |
velocity change attributable to crushing of the vehicle structure,
and an estimate of the speed at'separation of the vehicle from the

impact point.

The CRASH3 model of automobile collisions incorporates sevérai
analytical, iterative, and simulation based processes to derive
estimates of vehicle velocities and velocity changes resulting from
a collision between vehicles, or between a vehicle and a barrier.
The CRASH3 input data is copius, including several items which may

be supplied in response to each of some 50 questions.

In the final report on the SwRI pole collision model, it i8 recom-—
mended that the pole model be combined with the CRASE3 model, due

to the cumbersome nature of the calculations required by the pole



impact analysis. Cumbersome calculations are a good reasonrto _
automate the pole impact methodology, but this argument is for the
value of automation, not for the value of combining CRASH3 and the
SwRI algorithm into one unit. The questlon of whether to code thé
pole technique for ease of use is &1st1nct from the guestion .of
whether to place such code directly in the CRASHB-program.

Tn fact, there are good reasons for establishing a close relationship
between CRASH2 and the pole impact methodology. First, the pole
reconstruction improves the results obtainable from the CRASE3IPIO“
gram in vehicle-pole collisions. The extant CRASH3 program.can

only model poles as undifferentiated from barriers of any kind,
Furthermore, by definition within the CRASH3 framework, barviers do
not absorb energy in structural deformation when struck by a vehicle.
Thus, the addition of a pole collision modelling proéeduxe can pe
seen as a correction to or refinement of the CRASH3 damage-based
analysis. Such a modification would extend the scope of cases which

can be usefully analyzed under the CRASH3 program assumptions.

Second, an examination of the pole reconsiructidn procedure reveals
+hat several important required input variables are available in the
CRASH3 output. Figure 5-1 is a schematic flowchart for the pole
reconstruction process. Thig chart is adapted from the system flow-
chart presented as Figure 2 on page 15 of the SwRI final report.

Two crucial inputs are the velocity change due to deformation of

the vehicle structure and the vehicle velocity at separation from
impact. Neither of these guantities is"directly_measufabl@ at the
scene of an accident. Both of these values are estimated by the
CRASH3 program from data which can be collected at an accident loca=-
tion. Thus, the CRASH3 program output'is an especially convenient

source of input data that is required by the pole collision analysis.

Based on the methodology and sample calculations included in the
final report on the SwRI pole accident reconstruction procedure,
no significant obstacles are foreseen to an automated implementation

of the pole model. It appears that a straightforward program written
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in the FORTRAN language could be developed to perform the requiired

decisions and computations.

If it is granted that an automated pole collision model is worth
developing, and if the association of such a program with the CRASH3
program is also seen to have value, the preferred nature of that
association remains open to gquestion. The following paragraphs are

intended to explore this question; in the following format,

Three general approaches to an integration of the SwRI pole colli-
sion model and the CRASH3 program are discussed. The first approach
is development of a separate program which performs the pole model
calculations, is compatible with the CRASH3 program, uses CRASH3
results as input data, but is executed independently of CRASH3. The
second scheme considered is to graft the pole model onto the CRASH3
program code as a unitary subroutine or group of subroutines, while
retaining the present CRASH3 structure in large measure. The third
apprcach discussed here is to divide the pole impact modei.into
logical components, join each component to an éppropriate part of
the CRASH3 program, and modify the CRASH3 program structure 1o make
proper use of the meided components.

Each approach is summarized below, beginning with a discussion of the
details and difficulties attendant to the implementation process.
Next, the user's perspective is considered. The discussion of each
approach concludes with an assessment of the impact that the given
combination of CRASH3 with the pole collision model will have on

potential future developments of either syvstem,

The simplest integration of CRASH3 and the SwRI pole collision pro-
cedure would be to encode the pole procedure as a separate, eXxecu-
table program that is designed to ensure compatibility with the
CRASH3 program., Such compatability could be ensured by the selection
of terminology, variables, variable names, and units of measure
incorporated in the pole collision model code. It might also be use-

ful to modify the format of the CRASHI output presentation to make

i
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the input values for the pole model more accessible. For exémpley
the separation velocities could be included in the abbreviated
printout from CRASH3. Or, a separate output option could be con-
structed to display those values reguired by the pole model., A
third alternative would be to pass values between the two programs
in an on-line data file. Figure 5-2 illustrates some potential

relations between CRASH3 and a separate pole model.

To use this type of combination of two compatible programs, the
operator must issue commands to execute each program, and transfer
the reguired data from the CRASH3 output display to the pole model
input routine; unlessg a data file transmission system is established.
None of these tasks is lengthy or difficult, but they reguire that
the CRASH3 user segregate those cases involving pole collisions and

accord them the proper special treatment.

If CRASH3 and the pole accident reconstruction technigues were main-
rained as separate, compatible, executable modules, there would be
little or no complication of future developments in either model.

As separate programs, the two models could be modified, tested,

and refined without mutual interference. There would be no impact
of changes in the assumptions, procedures, equations, or ordering
of calculations internal to either program. The overéll impact on

program development costs would be minimal in this arrangement.

A second type of CRASH3-pole collision model combination would result
from joining the pole collision algorithm directly to the CRASHS3
program code, as a separate subroutine. In this approach, the input,
processing and output functions of the pole model would réside in

a subroutine or collection of subroutines grafted onto the CRASHI
program. Figure 5-3 displays a simplified flowchart of the CRASH3
program, as modified by the inclusion of a pole collision subrou-
tine. The pole collision analysis would have to be performed after
both the damage analysis and the spinout trajectory analysis are
complete, since it reguires input values from both of these proce-

dures,.
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In this system, the pole collision subroutine could be activated at
the option selection level, i.e., by adding "POLE" to the list of
options such as COMPLETE, ABBREVIATED, RERUN, etc. A betteyr alter-—
native might be to add a question to the central input routine
(QUIZ), asking whether the barrier is a pole. This gquestion would
be presented only when the barrier classification is selectéd by the
user; as a response to the vehicle classification gquestion which is

present in the current CRASH3 program.

A third approach would be to add a new classification, similar to the
immovable barrier classification, for poles. This approach would '
preserve the present classification format, and simply expand the
range of responses. Of course, any new classifications would regquire
changes in all subsequent subroutines of the CRASH3 program which

are controlled by the classification Qalue. The affected subroutines
would be from both the damage and trajectory analyses, with some

minor changes tc the output system.

The input values from CRASH3 to the pole model subroutine could be
communicated via common blocks now present in the program cade.
additional user inputs defining the pole characteristics would be
solicited by questions at the beginning of the pole collision sub-
routine. The pole collision subroutine is likely to contain lcokup

tables as additional sources of input data.

The pole collision reconstruction results could be reported in
several formats. The simplest system would print out the appro-
priate values at the conclusion of the pole analysis, before return-
ing control to the printout phase of the CRASH3 program. A more
integrated approach would be to pass ithe pole model results to the
CRASH3 print control sﬁbroutime, and display them in conjunction
with the other CRASH3 values. This would reguire the addition of a
common block to transmit the pole model output and of some printing

and formatting statements to the CRASH3 output subroutine.

Functionally, the pole model outputs can be best viewed as correc-

tions to the CRASH3 damage analysis results. For this reason, it
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might be moét appropriate to construct logic which would modify the
CRASH3 damage-based results according to the pole model output values.
The modifications could be performed at the end of the pole analysis
subroutine, and the corrected values passed to the CRASH3 pfintout
routine via an existing common block. In this case, a message could
be displayed as a preface to the CRASH3 results, which indicates

when pole cellision-based corrections have been made. This message

capacity would require changes to the CRASH3 subroutine PRINT.

The user's burden under a separate subroutine implementation of a
CRASH3~pole collision model combination would be sensitive to the
details selected f£rom the options described here. In any case, the
user would be obligated to signal the necessity of performing a

pole impact analysis at some point in the program operation. Fur-
thermore, an additional, second stage of input data defining pole
characteristics would neéd to be.supplied at the termiﬁal. Third,
the user would be required to interpret the output results in
accordance with some guidance on the pole collision analysis and its
effects. The output_interpretation necessary would depend on which
of the output schemes outlined above was installed in the production

program,

The CRASH3 program is large and complex. It contains many variables,
Therefore, the addition of a subroutine version of the SwRI @ole
collision model is certain to impact future development of either
model. By keeping the pole model relatively separate and seli-con-
tained, it would be possible to modify algorithms within the pole
model or within one of the CRASH3 subroutines without encountering
complications in the joint program. Any changes in common blocks
or global variables, however, would have widespread repercussions.
Such changes would reguire updating all portions of the source code.
It is fair to say that any inclusion of the pole collision model
within the CRASH3 program, even as a unitary subroutine, would

significantly complicate future revisions of both models.,

The third approach to combining the SwRI pole reconstruction algo-

rithm with CRASH3 is a complete integration of the two procedures.

5-9



This would be accomplished by isolating the pole model input fune-
tionsg, and combining them with the present CRASH3 input routine. ThHe
pole collision model processing would be_incorporated into a revised
version of the damage analysis subroutine from CRASH3. In this
revised damage calculation, pole impacts would form a new class of
parrier-type collisions, with :the pcle model approximations serving
to define the absorption of energy by any deformétion, fracture,; oY

dislocation of the pole.

To support the function of such a new damage analysis procedure,-”
the CRASH3 structure would need to be reordered. The pole model
requires values for the im@acting_vehicle'g separation velocity.
These values are calculated by the trajectory, or spinout, analysis
of the CRASH3 ?roqram. In order to provide separation velocity
estimates as input to the damage analysis, the current order of
damage analysis followed by spinout analysis would have to be
reversed, In pole collision cases, there would not be a problem
with this structural alteration of CRASH3., However, in vehicile-to-
vehicle collisions where the impact velocity vectors for the two
vehiclés are offset by an angle of ten degrees or less, the CRASH3
spinout analysis requires input from the damage analysis. Thus,

to perform a damage analysis with pole impact reconstruction
requires that the spinout analysis be completed first; to perform

a spinout analysis in certain cases requires that the damage
results be available. Any integration of the peole model into the
CRASH3 damage analysis would be required to resolve this problem,
perhaps by adding additional high level logic to the CRASH3 system.
Figure 5-4A outlines a possible restructuring of the CRASH3 program

under the aséumption of a complete pole model integration.

Figure 5~4B illustrates a second approach to restructuring CRASH3
in order to facilitate complete integration of the pole model. This
aiternative begins with a division of the CRASH3 spinout aﬁazysis -
procedure. Currently, the spinout analysis determines separation
velocitiés, which are then used to estimate impact speeds., The esti-

mation of impact speeds is logically separable from the derivation of
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separation velocities, although the two functions are now controlled

by the same subroutine in the CRASH3 program code.

Tf this multipurpose subroutine were divided according to its com-
ponent functions, the separation conditions could be estimated before
any damage calculations are'performed. With this arrangement, the
poile model input data reguirements could be supplied prior to the
application of a combined pole model-damage analysis. The impact
speed calculation would be performed after the combined pole model-
damage analysis, at a point in the program when all necessary preli=-
minary results are available. At that point, the impact speeds could

be derived regardless of the collision type.

This second approach to a full integration of CRASH3 and the pole
model computations would preclude high level logic procedures based
on collision type in the CRASH3 code. It would, however, necessitate
the dissection of subroutine START2 and other associated code changes

in the CRASH3 spinout analysis as it is presently constituted.

A complete integration of CRASH3 and the pole collision model would
exhibit an integrated output format. The pele model algorithm would
function to improve the accuracy of the damage based results avail-
able in the current CRASH3 printout. Additional items related to a
pole impact could be added to the CRASH3 output. Optionally, a
message could be supplied to indicate those cases in which pole irpact

assumptions were invoked.

The user impact would be minimized by'a complete integration and
restructuring of the two models. Only the addition of poles as

a class of barriers and the pole related input guestions would ciffer
from the present CRASH3 protocol. Of course, the number of supple-
mentary inputs required to model a pole impact is quite large, 1o
matter how the pole analysis is performed. Figure 5-5 is a repro-
duction of Table 1 from page 14 of the SwRI pole model final repcort.

I+ lists the data requirements of the reconstruction procedure.
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Minimum Regulrements

Type of Pole

Material of Pole cr Base

Length of Pole

Cross—-sectional dimensions at base of pole
Type of base/anchoring mechanism

Type of breakaway design

Damage extent of pole

Desirable Additions

Height of break/length of broken segment

Cross~-sectional dimensions at top and
bottom of broken segment

Final rest position of pole

Manufacturer of breakaway device

FIGURE 5-5. DATA REQUIREMENT FOR RECONSTRUCTION PROCEDURE



Tf the CRASH3 and pole collision models were integrated totally,
the result would be one program, necessarily larger, more cmmpli—
cated, and more difficult to maintain. The impact of any change to
any algorithm would require careful assessment. It follows that
future development of an integrated CRASH3-pole model program would
be more difficult and costly than any modifications introduced into

somewhat less dependent arrangements of the two procedures.

Figure 5-6 summarizes in table form the differences among the three
categories of CRASH3-pole model combinations discussed above. Note
that the details of a given arrangement of the two procedures are

important to a determination of the degree and significance of the

factors enumerated in this summary.

Figure 5-7 ranks the general approaches that have been presented,

in categories according to the dimensions along which the discus-
sions were aligned. In this ranking, with egual weights assigned to
each measure, separate but compatible programs are preferred; but
the distinction between the various combinations should rest on
other factors, as well as an informed weighting of the items congi-

dered here.

A significant external factor is the number of pole collision cases
which occur, and the proportion of all CRASH3 cases which.are pole

impacts. Essentially, it must be determined whether the henefit of
being able to handle pole cases as a built-in CRASH3 function out-

weighs the costs of providing this function, and of maintaining it

in the CRASH3 system during the course of processing those cases

which do not involve pole impacts.

The value of user convenience must be assessed broadly as well, Re-
ducing the user's role via automatic options cannot be appraised
blindly. There may well be value in retaining the usexr’s digcretion

as an input factor, at a relatively slight cost of sone addit zonal
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CATEGORY APPROACH
Two Unitary Complete
Programs Subroutine Integration
Ease of Implemen- 1 2 3
tation
Simplicity of Use 3 2 1
Facility for 1 2 3
Future Develop-
ment
Sum of Ranks 5 6 7
Mean of Ranks 1.6 2 2.3
KEY
1 = Best
2 = Intermediate
3 = Worst

FIGURE 5-7,

CRASH3

UNWEIGHTED RANKING OF GENERAL APPROACHES TO
- POLE MODEL INTEGRATION



+asks which must be performed. On the opposite side, automatic
features make the enforcement of uniform operating policies guite .
" simple, and this may enhance the consistency of results which are

obhtained.

A third external judgement which should contribute to the choice
among these approaches i1s the potential for, and probability of,
future development work on the models whose combination is under
consideration. If continuing research and significant alterations
are in store for either or both CRASH3 and pole reconstruction
techniques, then the costs of future development that would be
increased by an integration of the two programs must be weighed
heavily. If, on the other hand, the models are intended to be stable,
production oriented tools for the analysis of accident data, the
convenience and consistency of an integrated package may be the most

important factors.

Without guidance and information on these outside factors, it is
not possible to make a meaningful recommendation in this matter.
However, the preceding discussion can serve to illuminate and clilarify

some of the grounds on which a decision should rest.



SECTION 6. EVALUATION OF A BRAKING ASSESEMENT ALGORITHM

This section contains an evaluation of a braking assessment algo-
rithm which was developed by Calspan Field Services, Inc. under
Contract No. DOT-HS-5-01230C from the U.S. Department of Tramsporta-
tion, National Highway Traffic Safety'Administration, The avalua-~
tion was performed by Raymond R. McHenry, of McHenry Consultants,
Inc., under subcontract to Wilson Hill Associates. Mr. McHenry

is the principle author of the original CRASH computer program.

In his evaluation, McHenry concludes that the proposed algorithm
does not appear to serve a useful purpose. He recommends further
study in the investigation and assessmént of pre-crash events as a

prelude to the construction of a suitable automated model.



6.1 BACKGROUND

The Pre-Crash Braking Simulation (References 1 through 4) was deve-
-loped by Calspan Corporation as an investigation aid for assessing
the role of vehicle braking performance in highway accidehtS.x The
format of the computer program and many of the individﬁai subrou-
tines are patterned closely after corresponding aspects of the

CRASH2 program (Reference 5). Thus, the braking assessment algorithm

may be viewed as a special adaptation of CRASHZ.

The present review and evaluation has been focused on the adaguacy

of the developed computer program‘for the intended purpose. In par-
ticular, the analytical assumptions, selected approximation techﬁiques
and evidence requirements are reviewed to assess corresponding limi-
tations on the validity and utility of results obtained with the com-

puter program,

6.2 CONCLUSIONS AND RECOMMENDATIONS

6&.2.1 Conclusions

£.2.1.1 The Pre-Crash Braking Simulation Program doeg not appear
to serve a useful purpose,

The use of a plane-motion analytical approach to evaluate the effects
of chahges in braking performance bypasses the fundamental topic 0f
brake balance and its effects on directional control under different
conditions of tire-terrain friction and vehicle loading. The deve-
loped computer program makes use of increased braking "efficiency"

to evaluate the needed performance "improvement" to avoid the givéﬁ
accident or to reduce its severity., However, the arbitrary "improve-
ments," which are said to "not yet" include anti-lock braking, are
not related to any identified design featurés in the vehicle brake

system.



The extensive use of subjective data to establish the pre-crash
coordinates and to estimate the achieved level of deceleration can-
not be expected to yvield a reliable estimate of the initial vehicle
speed. A low estimate of the achieved level of decezeration will
obviously indicate a greater potential for improvement than will a
high estimate. Note that braking performance at a deceleration
level less than that corresponding to locked wheels would always be
"improved," in the context of the selected research approach, by an

increased pedal force.

6.2.1.2 The feasibility of performing useful calculations with data
fThat can be obtained in relation to pre-crash events has
not been established. '

A pilot study utilizing hand calculations and/or applications of an
existing computer simulation of braking dynamics (e.g.. Reference 7)

should have preceded the development of a special computer program,

6£.2.2 Recommendation

6.2.2.1 A pilot program of investigations with increased emphasis
on data related to pre-crash events (e.g., Reference 4)
should be implemented.

The collection of a representative body of pre-crash data will permit
a realistic assessment of the extent of quantitative information.that
can be obtained by investigators. It will alsoc permit the performance
of preliminary analyses of patterns in the pre-crash vehicle behavicr.
Note that the results of experimental research of vehicle behavior
under conditions of combined steering and braking indicate that sig-
nificant differences exist within the current vehicle population
(Reference 6). In particular, some vehicles "plow"” tangentially

while others "spin" when brakes are applied in a turn. Other patterns
may also be found which can be related to specific brake-system design

features,

If the extent of quantitative data is sufficient to justify recon-

struction calculations and, further, if such calculations can yield
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useful information, hand calculations and/or application ©of an
existing computer simulation of braking dynamics (e.g., Refarence 7)
would appear to be a loglcal first step. The results of a sample afh
hand calculations and/or computer simulations can be evaluated prior
to a decision to automate a special calculation procedure for more

extensive applications.

6.3 DISCUSSION OF REBSULTS

The correlation of detailed control characteristics of vehicles with
either collision occurrences or collision severity levels in actual
highway accidents is an extremely complex task. The role of vehicle
control propertles tends to be obscured by effects of (1) the atten-
tion level, skill and judgment of the driver, (2) roadway surface

and visibility conditions, and (3) the conditions of vehicle main-
tenance (e.g., tire pressures) and vehicle loading, AmOng the various
aspects of vehicle control, brake system performance would appear to
constitute the least difficult item for investigation, éince tire
marks produced by brake applications and/or reported observations of
brake lights by witnesses are frequently available. However, a mean=—
ingful interpretation of related investigation results in terms of
the role of brake system performance in accident occurrence must be
based on a realistic assessment of both the level of deceleration
achieved on the given surface and the corresponding effects on direc-

tional control.

The usefulness of the subject computer algorithm for assessment of

braking performance is limited by a number of major factors.

6.3.1 Limitations Imposed by Analytical Approach and Performance
Criterion

The computér algorithms described in References 1 through 4 are
limited to plane motions and, therefore, they do not include effects
produced by dynamic changes in the distribution of vehicle loading.
Thus, the fundamental design problem of aéhieving an acceptable brake
balance (i.e., front/rear distribution of brake torque} over a wide

range of operating conditions is ignored in the daveloped procedure
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for assegsment of "improved" vehicle'braking, In fact, the term
"improved braking performance,” as used in References 1 through 4,
appears to refer exclusively to a reduced stopping distance. Note
that on page 3-9 of Reference 1, it is stated that "the single most
important performance characteristic of braking éystems in accident

avoidance or injury reduction evaluation is stopping distance.”

6£.3.1.1 Stopping Distance Criterion of Performance

In Reference 1 {p. 3-35) it is stated that "in the range of pedal’
pressures that drivers are able to apply, just about all vehicies
are able to lock their wheels." Thus, it follows that a deceleration
level corresponding to the locked-wheel, or sliding, fricticn coeffi-
cient between the tires and any road surface can be achieved by most

vehicles.

One anti-lock system {Mercedes-Benz) which "reduces stopping dis-
tance under all conditions" is discussed on page 2-26 of Reference 1,
Other anti-lock systems (e.qg., Chrysler.Sure Brake) have "slightly
higher" stopping distances on dry surfaces but "substantially reduced”
stopping distances on wet surfaces. On the basis of the overall dis-
cussion of improveﬁents in braking performance (Section 2.3.2 of
Reference 1) and using the selected criterion for improvement, anti-
lock is the only defined brake.system design feature that can "im-
prove" braking performance {l.e., reduce stopping distance) beyond

that achievable with all wheels locked.

Yet it is stated on page 1 of Reference 2 that "anti-lock braking
systems are not as yet simulated by the program.” Therefore, it is
not clear what the simulated "improvements™ in brake performance
(braking "efficiéncy" increases) within subroutine AVOID (p, 5 of

Reference 3) are intended to represent in real-world brake systems.

6.3.1.2 Neglect of Directional Control Effects

On page 3-5 of Reference 1, it is stated, with regard to varlable

brake proportioning, that "although this approach tends to reduce
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braking efficiency, the advantages of retaining directional control
over the ccmplete operaticnal range are considered to outweigh the
loss ¢f efficiency." This statement conflicts with the simplistic

use of stopping distance as the only measure of braking performance.

Tha arbitrary limitation, in the computer program, of the braking of
wheels of a steered vehicle to 50% of full lock-up (p. 36 of Refer-
ence 3}, combined with the neglect of dynamic weight transfer from
the rear to the front wheels in forward braking, precludes any.meanm
ingful results from the Pre-Crash Braking Simulation Program in rela-
tion to directional control while braking. Note that the limitation
to 50% of full lock=-up braking while steered effectively limits the
corresponding reduction, by braking, of the maximum side-force capa-

pility to 13.4%, on the basis of a simple friction circle:

S 1.00 - (0.5)° = 0.866

In Table 6-5 on page 6~-8 of Reference 1, "estimated benefits of
improved braking" are presented with an indication that "this is
exclusive of any design changes that would allow the operator to
maintain the vehicle's directional stability in a panic braking situa-

tion."

6.3.2 Limitations Imposed by Evidence Requirements

6.3.2.1 Use of Subjective Data

The rationale for development of a pre-crash phase computer recon-
struction program 1s presented on page 5-~1 of Reference I wherein

it is stated that "application of all these (hand calculation)
techniques are very user dependent, and the results also rely, to
some extent, on subjective interpretations by the user."” The need
for subjective interpretations 1s not, of course, altered by the use
of a computer program. In fact, on page 4-24 of Reference 1, it is
stated that "it 1s apparent from this listing of pre-crash data

elements that many are subjective in nature or represent the subiec~

[
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tive judgment of the investigator such that their accuracy is inde-
terminant and/or their interpretations are likely to lack consisf
tency." On page 4-21, the developed reconstruction procedure is de-
scribed as follows: "the reconstruction of the pre-crash phase is
very much a process of combining the limited amount of quantitative
evidence with the subjective information to obtain a 'best £it' solu-

tion for the data available."

6.3.2.2 Undefined Driver Behavior

The undefined effects of driver-vehicle interaction on the pre-crash
phase of an accident constitute a major obstacle to correlation of
brake system performance with accident involvement. This fact is
acknowledged on page 3-18 of Reference 1 where it is stated that
"since it is extremely difficult (if not impossible) to acguire valid
information on the driver's braking behavior at the accident scene,
driver-braking system interaction effects cannot be easily determined."
Further, it is stated on page 3-16 that "independent of braking system
performance parameters the effective employment of braking as the
primary accident avoidance tactic depends on the timely application

of brakes by the driver. 1If, because of inattentiveness or slow reac-
tion, the driver delays application of the brakes in an emargency

situation, the existence of superior performance may be meaningliess.”

6.3.3 Analytical Errors

6.3.3.1 8ide Force Calculation

Among the many overstated criticisms of SMAC that are prescnted in
Reference 8, the one item that is considered to have merit is related
to the use of the tangent of the slip angle. The choice to use the
slip angle in radians had been deliberate, in the interest of simpli=~
city. Note that the tangent of that angle had been praviocusly used

- in the HVOSM computer program {e.g., Reference 9). For the case of
braking with a slip angle greater than 200, significant errors were
found to be introduced in the calculated side force of the tire by

the direct use of the slip angle in radians.
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The CRASH and SMAC programs were both modified in 1978 to make ;
use of the tangent of the slip angle., However, in kReference 3 (1980);
the slip angle in radians is again used directly in Subroutine TRAJ
{p. 177, line no. 123, Labeled 35) .

6.3.32.2 Calculation of AV

In Subroutine COLL, the speed change, AV, is calculated at the point
of common velocity rather than at the center of gravity (Subroutine
COLL, line nos. 215 through 219).

6.3.3.3 Other Peossible Errors

A number of apparently typographical errors were found to exist in
the four reports that were reviewed {e.g., p. 5-10 of Refersnce 1,
p. €6 of Reference 3). However, in view of the conclusions reached
in this evaluation, the equations were not all checked against the

program listing (Reference 3).
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SECTION 7. RECOMMENDATIONS AND CONCLUSTON

This section presents some recommendations for continued improvements
to the CRASH3 model and a conclusion on the present status of the

program,

7.1 GENERAL RECOMMENDATIONS

All work on the CRASH3 would be simplified by taking steps to cilarify
and restructure the present program code. The present code is a
product of several revisions over a period of many years, and it has
accumulated awkward, unnecessary attributes which hamper debugging,
analysis, and updating of the source code. Simple changes such as
resequencing and improving the source code comments would be of

value in this regard.

Another such change would be the removal of duplicate and unused
variables from the CRASH3 code. It appears that an -analogue to each
major variable has been added along with each revision of or addi-
tion to the program. Some unused variables are known to be present.,

These conditions cause confusion as well as waste storage space.

In addition to unnecessary redefinition of variables, there are fre-
quent duplications of code segments which could appear less often,
but be executed more often, if the source code were streamlined and

modularized.

The creation of an option to save CRASH3 input data in some on-linc
form would facilitate rapid, comprehensive testing of charnges to

the program code. One way to accomplish this would be to write out
the common block storage areas to a disk file upon receipt of an
appropriate command from the user. Later, the disk data file could
be read in, thus placing the program directly in a position aﬁalo@ous
to that situation which occurs at the commencement of the rerun

option. The data files formed from the common blocks would be a



very compact form of storage for the CRASH3 input data. This system
~would use the flexible and proven, but time consuming, QUIZ routine
te accept data from the user, then enable the user to save and recall
the case for future use. It might supplant the lengthy, rigid Batch
option used in CRASHZ which has been eliminated in CRASH3, The
Batch option is inflexible and contains many duplications of code

found elsewhere in the CRASH2 program.

The development of such a "Save" option would facilitate the use of
on-line data bases for CRASH3 testing and validation. Automatic
testing could be performed guickly and easily, thus qréatly reducing
the cost of comprehensive testing of experimental program changes.

The FORTRAN language NAMELIST input~output facility could be used to
provide more flexible diagnostic output with less clutter and con-
fusion in the socurce code. NAMELIST input statements could be used
to change intermediate values during execution of the program, a

valuable feature for research purposes.

7.2 DAMAGE ANALYSIS

As might be expected in any empirically grounded mo&el, the CRASH3
damage analysis could benefit from a larger and better collection
of test data. Past damage tests should be selected, cataloged, and
screened for greatest utility. Future damage measurements £rom

staged collision tests should be monitored and validated carefully,

A consistent, explicit derivation of the A, B, and G coefficients
should be established and documented. When A, B, and G can be
derived from any well documented collision test, efforts can be
made to develop new vehicle categories based excolusively on crush
properties, rather than other measures such as vehicle wheelbase
which are known to correlate poorly with crush stiffness in many
instances. A wéll defined A, B, and & derivation could be automated
and combined with data bases of damage test results fto guickly and

accurately refine the CRASH3 coefficients.



The correction factor for tangential forces in ceollisions with prin-
ciple directions of force (PDOFs) not normal to the vehicle surface
has been a freqﬁent and significant source of inaccuracy in CRABH3
results. This problem is particularly prominent when the function

1+ tan28 grows large with large PDOF divergences from the normal
position. Either the correction factor should be modified, or the
aberrant cases selected for alternate treatment by the CRASH3I program,

7.3 SPINOUT ANALYSIS

The SPIN2 subroutine exhibits radically different responses depending
on the path type specified by the answers to several YES-NO guestions
in the CRASH3 input routine. The results of SPIN2 should be compared
by path type (e.g., “skidding'with end of rotation point"™) to isclate
weaknesses of the SPIN2 approach. Borderline cases would also ?rof

vide insight into the operation of SPIN2 assumptions, if traced care-
fully through the analysis using alternate agsumptions and comparing

results.

The traijectory simulation routines could be tested by creating &
special modification of CRASH3 which permits substitution of separa-
tion conditions by the user prior to tﬁe performance of the time
history simulation. This modified program could be used with the
measured separation conditions from the RICSAC cases to test the
adegquacy of the trajectory simulation eguations of motion. If the
trajectory simulation provided good results with actual separation .
conditions, attention could be focused on the error computation and
adjustment procedures in subroutine USMAC, If the results were not
good, the model of vehicle motion would be an identified target for

revision.

The detailed analysis of several trajectory simulation runs, perhaps
with additional, specially designed diagnostic printouts, would help
to establish what happens, when, and where in those cases which evi-

dence poor results.
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Many poor trajectory simulation results are related to inputs of
zero- separation angular velocity from the SPINZ subroutine, which
produces this as an output value in all cases without skidding. The
zero value is never changed by subroutine USMAC, since the angular
velocity correction adjustment is a multiplier of the starting value,
- Some accommodation should be instituted for this situation,'aither

in SPINZ oxr USMAC or both subroutines.

The impact speeds computed by conservation of linear momentum might
be improved by an allowance for a known zero impact velocity, char-~

cacteristic of a vehicle known to be at rest at the time impact occurs,

7.4 PRINTOUT FORMAT

Input and cutput values are not distinguished clearly in the present
CRASH3 printout. The identification of independent and dependent
values should be obvious, and data from lockup tables should be

clearly marked.

Some simple output results could be added to the abbreviated print-
out. Separation velocities and the trajectory simulation results
would be good candidates for this change., This addition would make
the short printout more useful as well as reduce the number of
occasions on which the lengthy long form must beé attended %o by the

user.

CRASH3 should report the user's answers to the yes or no questions
which define the wvehicle spinout path types. The answers to these
guestions are c¢rucial to determining the type of analysis performed
in each case. In the present printout, it is possible to extract
or deduce the answers supplied to these questions, but not easily
or in all cases. These items should be readily available in the

printout.
Tirnally, there is duplication in the long form of the CRASHI print-
out which could be eliminated. The impact position, collizion con~

ditions, and separation conditions sections of the mrinteout are very
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repetitive. There seems to be no need to print summary results in
the midst of a complete rveport, as is now the case. These altor—

ations could significantly streamline the CRASH3 long form ocutput.

7.5 CONCLUSIONS

The CRASH program is a complex,.multivariate approach to a difficult
problem of estimation. The model combines several analytical tech~
nigues to utilize a broad spectrum of input data and produce rea-
sonably accurate results across a broad spectrum of vehicle colli-
sions. In its present form, CRASH3 is able to produce figures

which are "in the ballpark" for most well-documented accident cases.

The thrust of the present effort of CRASH3 maintenance and develop-
ment has been to improve the results obtainable from the Program
along the lines of analysis which have been laid out by previgus

CRASH researchers,

Our conclusion is that there is more progress remaining to be made
by further refinement of the basic methodologies which have been
incorporated in the CRASH3 model. Bach of the modes of analysis
used in crash appears to be amenable to continued development. New
empirical data can be collected and reduced to improve the empirical
bases of the damage and spinout selutions. Augmented validity
checking of the input data should yield better results from all
components of the model. Logic can be developed'to intercept spe-
cial cases which do not fit standard CRASH3 assumptions and process

them successfully.

All of these tasks will contribute to an increase in the degree of
accuracy obtainable from CRASBH3. They will also lay the groundwork
for future analytical modifications *to the model., It is our further
conclusion that a comprehensive housecleaning, modularization, and
restructuring of the CRASH3 program code, accompanied by improved
documentation such as flow charts and a variable dictionary, would
significantly reduce the time, cost, and difficulty of future deve-
lopment of CRASH3.






APPENDIX A

ILLUSTRATION OF CDC (VDI) SCANNING ROUTINE AS MODIFIED TO SCREEN
J224MAR80 DAMAGE CODES
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RESULTS OF TASK 3
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1.0 INTRODUCTION

This is a report of the results of tasks 3A, 3B, and 3C of the
CRASHZ maintenance project; We have assumed the reader's
familiarity with the two CRASH models (CRASHZ2 and CRASH2A},
their programs,their principal sabrdutines,and the final report,
"Research Input for Computer Simulation of Automobile Collisions,
(RICSAC), Volume IV: Staged Collision Reconstructions." =



2.0 PURPOSE

The purpose of Task 3A was to activate the coding in CRASHZA
which makes Computations based on initial slip angles for either
or both vehicles in a collision. Tasks 3B and 3C were designed
to compare thé results produced by CRASH2 and CRASH2A using
identical input derived from the 12 RICSAC staged collisions.



3.0 PROCEDURES

Task 3A was accomplished by locating the statements relevant to

the slip angle computation in the CRASH2A code, changing the
statements, recompiling the source code, and executing several
demonstration runs to illustrate the slip angle results. Tasks

38 and 3C were accomplished by executing the CRASH2A model using

as input the data from the RICSAC test cases. The input was dupli-
cated from the printouts in the appendix of the RICSAC final report.
Task 3B consisted of CRASH2A runs without the trajectory simulation
option; Task 3¢ included the trajectory simulation option. When
running the trajectory simulation, all vehicle steer angles were

set to zero and question 35 (terrain boundary) was answered "NO."

The RICSAC input to CRASH2A produced unsatisfactory output for many
of the 12 test cases. Four of the cases failed input verification
checks, three cases produced execution errors in subroutine VELCEK,
and six cases produced execution errors in subroutine USMAC in the

trajectory simulation (see Section 5.0).

To improve the utility of these results for comparison with those

of CRASH2, several changes were made to the input data and to the
CRASH2A program code, These alterations were conducted in consul-
tation with the Contract Technical Manager, Thomas Noga, and are
described in Section 5.0. To provide identical runs for comparison
with the CRASH2A runs, all of the 12 RICSAC cases were rerun On
CRASHZ after the input data modifications were completed., Alsc,

it was necessary to supply CRASHZ runs with the trajectory simulation

option, since the RICSAC tests do not include this data.



4.0 RESULTS

Table 1 displays the statements changed to activate the slip
angle computation routines in CRASH2A., All chariges occurred in
the QUIZ subroutine. The printouts of several test runs will.

be included as an appendix in the final report.

Table 2 is a tabulation of results from CRASH2 and CRASH2A based
on the SPIN2 momentum calculations, For Task 3B, the damage
based results were identical for CRASH2 and CRASH2A.

Table 3 compares the results of the trajectory simulation option
on CRASHZ and CRASH2A with the measured data from the RICSAC

tests. Six cases are not available on CRASH2, due to execution
errors in the program. These difficulties relate to the problem

described in Task 4.F of t+he contract (see number 3 in Section 5,0).

Table 4 displays the results of the RICSAC data run on CRASHZA, and
the results of subsequent modifications to the program code and
input. Table 3 includes similar results obtained from the trajec-

tory simulation runs.



TABLE 1

CRASH2ZA STATEMENT CHANGES WHICH ACTIVATE.
SLIP ANGLE COMPUTATIONS (TASK 3A)

(ALL CHANGES ARE IN SUBROUTINE QUIZ)

A} Line Number 3170, Statement Number 110

For inactive slip angles:
IF ((ICODE.GE.1l).AND. (ICODE.LE.12))} GO TO 165

For active angles:
IF {({(ICODE.GE.1l).AND.(ICODE.LE.12})} GO TO 170

B} Line Number 85530, Statement Number 1500
For inactive slip angles:
GO TO {1950,1950,200) ,MENU

For active slip angles:
CONTINUE

C} Line Number %990

For inactive slip angles:
IF (ICODE.EQ.-2) GO TO 1300

For active slip angles:
IF- (ICODE.EQ.~2) GO TO 1850

Note: There are comments associated with the above lines of code
which should be modified to preserve c¢larity when changes
are made., ' :



TABLE 2
CRASH RUNS FROM SPIN2 + (DAMAGE OR OBLIQUE),
WITHOUT TRAJECTORY SIMULATION (TASK 3B)

ALoSal _ MEASURED CRASH? CRASH2A

TIST NO. AvS VALUES VALUES _ VALUES
1 V1 imp 19.8 ~G.7 -8.3
tot 12,2 9.4 16.0
long -10.6 -2.8 -1.9
lat 6.0 -9.0 3.8
Vv, imp - 19.8 0.8 : 1.1
) tot 15.6 14.1 ' 15.0
long -12.1 9.6 11.3
lat -9.8 -10.3 -9.8
MRU=5,043 MRU=3.,736
2 Vl imp 31.5 32.8 31.7
tot 19.4 22.0 23.2
long : ~16.5 . -20.7 -21.5
lat 10.5 7.7 8.6
Vi oimp 315 35.6 36.3
Crot - 33.40 34.8
long — -25.4 ' -27.3
lat e -21.1 ~21.6
MRU=4, 998 MRU=4.,879
5 V. imp 21.5 24.9 26.8
tot 9.2 12.4 14.9
long -8.5 -12.2 ~-14.0
lat . 3.0 2.3 5.1
v, iap 21.5 20.5 25.3
) tot 11.9 0.4 24.5
long -11.5 ~13.3 -18.8
lat -3.2 ~15.4 -15.7
MRU=5,053 MRU=4.,931
7 VI imp 29.1 26.2 25.9
ot 12.0 11.6 26.8
long -11.5 ~11.1 ~23.2
lat ~3.5 3.2 13.4
Vo dmp: 29.1 27.1 34.7
tot 16.5 25,3 58.3
leng -14.1 ~18.2 -50.5
lat -8.5 ~17.5 -29.2
MRU=5, 044 MRU=5.023
8 v, imp - 26.75 19.0 16.7
tot 5.3 1L 12.6
leng -12.7 -7.3 ~-6.9
lat 8.6 8.4 10.5
Vi imp 26.75 25.0 25.7
i tot 10.7 10.6 12.0
long -7.2 -8.0 ° -10.0
lat -8.0 ~6.9 ~6.6 _
MRU=S .74 MRU=3.853
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CRASH RUNS FROM

TABLE 2
SPIN2 + (DAMAGE OR OBLIQUE},

WITHOUT TRAJECTORY SIMULATION (TASK 3B)_(Continued)

MEASTRED CRASH2 CRASH2A
Avs TALUES VALLES VALUES
3 T, tmp hED 23.2 20,1
) tot 21,4 342 20.1
long -17.7 -22.1 ~20.1
lat 12.0 9.8 6.0
v, imp 21.2 22.9 18.0
tot 8,9 11.2 9,2
long -5.0 “4.5 0.0
lat ~7.4 -10,2 -9.2
MRU=5,032 MRU=3, 774
10 v, imp 33.3 32.7 3.2
tor 35.1 32.6 33.4
long -27.3 ~26.5 ~28.2
lat 22.0 13.0 17.8
v, imp 33,3 3.5 34.5
tot 16,1 15.9 16.3
long -8.8 -9.3 -8.7
lat -11.0 -13.0 -13.8
MRU=S, 100 MRU=3.8204
1l v, imp 20.4 17.2 22.1 fwud -1,7 lat
tor 24.0 21.0 22.1
long -24.,0 -21.0 -22.1
lat 0.8 0.3 1.7
v, imp 20,4 18.0 13.5 fwd -3.2 lat
" tot 15.7 13.2 13.9
long -15.6 «13.2 -13.3
lat 2.0 0.2 3.2
MRU=4 , 995 MRU=3. 73]
12 v, imp 31,5 9.8 19.9 fud 1.2 lat
tot 40.1 28.2 8.5
long -50,0 -28.1 -8.4
iat -2.2 ~1.6 0.6
v, imp 31.5 30.2 30.4 fwd 1.5 lat
" ot 26.4 20,0 11.6
long -26.0 -19.5 10.9
lat 4.8 4.6 4.2
MRU= 5,034 MRU=3, 796
3 v, imp 21.2 15.2 19.8 fwd 0.2 lat
tot 9.5 3.1 12.3
long -9.5 -3,1 12.3
lat 0.4 0.2 5.2
v, imp 0.0 10.4 3.1 fud -0.2 lat
tot 15.8 5.4 15.0
long i5.8 4.9 14,8
lat 0.2 -2.3 -2.2

MRU=5. 105

MRU=3.733



TABLE 2
CRASH RUNS FROM SPINZ + (DAMAGE OR OBLIQUE),

WITHOUT? TRAJECTORY SIMULATION (TASK 3B) (Continued)

RL05AC MEASURED LRASHZ CRASHIA
TEST NO, AYS VALUES VALUES VALDES

£ "JI imp 38,7 32.5 43.9 fwd 0.4 lat

Lot 18,7 10.¢ : 26.3

long -18.7 =9.7 -26.13

Lat 0.4 4.9 3.6
';a imp 0.0 2.2 -2L.4 fwd 7.4 lat

tot 22.2 15.5 41.4

long 22.2 14.9 39.6

lat -2.8 -4 -12.0
MRU=5, 124 HMRU=3,787

3 1‘1 imp 39.7 33,6 25.3

tot 15.3 7.9 3.0

long ~-16.3 =-7.9 0.0

lat 0.2 3.0 0.6

v, imp 4.0 9.4 ~33.7

"ot 25.1 15.9 23,2

long 25.5 15,2 22.8

lat ~-1.8 b b 4.1
MRE=5,035 MRU=3, 844



TABLE 3

CRASH RUNS WITH TRAJECTORY SIMULATION OPTION {(TASK 3C)
RICSAL VEHICLE TEST MEASURED CRASE? CRASHZA
VEST MO, NUMBER ITEM VALUES VALUES VALUES
1 1 SIMULATION DIl NOT CONVERGE CONVERGED OK
v IMPACT 19.8 14,7 0.6
Av 12.2 9.7 11.0
2 SIMULATION TIMED OUT AT 10 SECONDS DID ROT CONVERGE
Vv IMPACT 19.8 20.6 -7.4
av 15.6 146 16.5
MRU=10.369 MRU=21.326
2 1 SIMULATION TIMED OUT AT 10 SECOMDS DID NOT CONVERGE
¥ IMPACT 31.5 32.8 33.2
4V 19,4 22.0 24,6
2 SIMULATION .TIMED OUT AT 10 SECONDS CONVERGED OK
¥V IMPACT 31.5 15.6 19.5
DV — 13.0 36.9
MRU=7.85% MRU=14.0096
B 1 SIMULATION DID NOT CONVERGE
YV TMPACT 21.5 24.0
FAN) 9,2 14.2
2 SIMULATION CONVERCED OK
vV IMPAQT 21.5 27.6
AV 11.9 23.3
MRU=21.189
7 i SIMULATION DID NOT CONVERGE
¥ IMPACT 29,1 25,9
AV 12.0 14.7
o2 SIMULATION CONVERGED OK
vV IMPACT 29.1 40.8
Fax 16,3 32.0
MRU=24.577
8 Tl SIMULATION DID NOT CONVERGE DID KOT CONVERGE
YV OIMPACT 20.75 11,4 19.3
FANY 15.3 11.5 18.1
2 SIMULATION TIMED OUT AT 10 SECQNDS DID NOT CONVERGE
vV OIMPACT 20.75% 25.5 21.8
OV 0.7 11.0 7.2
MRU=11.090 MRU=23.563
Q 1 SIMULATION DID NOT CONVERGE
7 IMPACT 21.2 39,1
AV 21.4 19,7
2 STMUTATION TIMED 2UT AT L0 SECONDS
v IMPACT 2142 i9.9
OV 8.9 13.3

MRU=Z21.7L1



TABLE 3

{Continued)

CRASH RUNS WITH TRAJECTORY SIMULATION OPTION (TASK 3C)
RICSAC VEHICLE TEST MEASURED CRASHZ CRASHZA
TEST NG NUMBER ITEM " VALUES VALUES VALUES
10 1 SIMULATION DID NOT CONVERGE
Y IMPACT 33.3 26.7
4% 35.1 33.4
2 STMULATION TIMED OUT AT 10 SECONDS
U OIMPACT 33,3 34,5
AV 4.1 16.3
MRU=26,824
il 1 SIMULATION DID NOT CONVERGE
V DMPACT 20.4 15.6 fwd 4.7 lat
oV 24.0 20.0
2 " SIMULATION CONVERGED OK
¥ IMPACT 20.4 17.3 fwd 1.0 lat
&Hv 15.7 12.5
. MRU=14.7218
12 1 ‘SIMULATION TIMED QUT AT 10 SECONDS DID NOT CONVERGE
v DMPACT 31.5 20.2 21.0
ARy 40.1 28,2 27 .4
2 SIMULATION DID HOT CONVERGE DID NOT CONVERGE
¥ IMPACT 31.5 24.3 23.7
OV 5.4 21.4 18.0
MRU=9 , 346 MRU=18,318
3 STMULATION TIMED OUT AT 10 SECONDS CONVERGED OK
v OIMPACT 21,2 15.2 19.8 fwd 0.2 lat
FANY 9.5 3.1 12.3
2 STHMULATION TIMED OUT AT 10 SECONDS CONVERGED OK
¥ IMPACT 0.0 16.4 3.1 fwd  ~0.2 lat
FaNy 15.8 5.4 15.0
MRU=7,637 MRU=13,833
A 1 SIMULATION TIMED OUT AT 10 SESONDS TIMED QUT AT 10 SECONDS
v IMPACT 38.7 32.5 43,9 fwd 0.4 lat
AV 18,7 10.9 26.5
2 STMULATION TIMED OUT AT 10 SECONDS TIMED OUT AT 10 SECONDS
U IMPACT 0.0 2.2 ' 1.4 fwd 7.4 lat
Ay 22.2 15.5 41.4
MRU=7.913 MRU=13.385
3 1 SIMULATION TIMED OUT AT 10 SECONDS
¥ IMPACT 3.7 55.0
AV 16.3 29.2
2 SIMULATTON DID NOT CONVERGE
V IMPACT 0.0 ~-34.6 fwd 14.6 lat
AV 25.1 57.2
MRU=25.236

12



TABLE 4

CRASHZA RUNS WITHOUT TRAJECTORY SIMULATION (TASK 3B)

FIRST ATTEMPT | SECOND ATTEMPT THIRD ATTEMPT
RICSAC RICSAC PDOF SPIN2
TEST INPUT ANGLES STATEMENT
NUMBER DGPLICATED ADDED CHANGED
1 OK
2 'INCOMPATIBLE VELCHK ERROR OK
PDOF'S
6 INCOMPATTBLE VELCHK ERROR OK
PDOF'S
7 INCOMPATIBLE VELCHK ERROR OK
PDOF 'S ,
8 OK
9 OK
10 OK
11 OK
12 OK
3 OK
4 INCOMPATIBLE OK
PDOF ' S
5 OK




TABLE 5

CRASH2A RUNS WITH TRAJECTORY SIMULATION (TASK 3C)

FIRST ATTEMPT SECOND ATTEMPT THIRD ATTEMPT FOURTH ATTEMPT
RICSAC RICSAC PROF SPIN? NULL ROTATION
TEST INPUT ANGLES STATEMENT WHEN WO
NUMBER DUPLICATED ADDED CHANGED SKIDDING
1 OK
2 INCOMPATIBLE VELCHK ERROR USMAC ERROR oK
BDOF ' 8 :
5 INCOMPATIBLE VELCHK ERROR USMAC ERROR OK
PDOF 'S
7 INCOMPATIBLE VELCHE ERRQR USMAC ERROR oK
PDOF 'S
8 OK
9 USMAC ERROR GK
16 OK
11 USMAC ERROR 0¥
12 OK i
3 OK I
1
i
4 INCOMPATIBLE DK
PDOF'S
5 USMAC ERROR OR




5.0 - DETAILS OF PROBLEMS ENCOQUNTERED

1. Principal Direction of Force (PDOF) Incompatibility -
The equations for both the CRASH?2 and CRASHZA models
assume that the PDOF angles are 180° apart for the
two vehicles in a collision. CRASH2 does not verify
this condition; however, CRASH2A does so in the
foilowing manner. The impact heading angles (guestion 7)
are combined with the PDOF angles from questions 3 and 4.
and tested for a 180% 15° gffset. The PDOF angles are
centered specifically by the user or are derived from
the clock direction included in the VDI. If the data
fails the offset test, CRASH2A returns to guestion 3
(VDI number 1} after displaying a warning message.

Four of the test runs from the RICSAC final report

fail the PDOF compatibility check in CRASH2A, These
are cases 2, 6, 7, and 5, In each case, no PDOF angles
were ehtered by the user, and the VDI-based angles were
not 180° apart.

To correct this problem, acceptable PDOF angles were
added to the test case input data from the RICSAC
report. The angles selected were those listed as
direction angles in the Measured Damaged Dimensions
section of the summary of physical evidence displaved
for each test case. In_each case, these angles pro-
duced the reguisite 180° offset and passed the CRASH2ZA
input verification routine, Subseguently, these "new”
PDOF angles were added to the input data used for the
final reruns of CRASH2, to preserve comparability of
the test conditionsg, =

2. SPIN2 Coding Error - Three of the RICSAC test cases
produced execution errors in subroutine VELCHK, ‘these
cases, numbers 2, 6, and 7, involved no skidding of
vehicle number 1. In subroutine VELCHK, three lines
past statement number 290, a division by zero cceurs if
US51 and VS1 are zere. USl and VS1 are the separation
velocities of vehicle number 1, and are not expected
to be zero.

The program logic which produced zero values for USl
and V81 can be traced as follows. Beginning in sub-
routine START2, S1D is assigned a value based on the
length of the path travelled between the end of rotation

and rest positions. S1D denotes the residual linear
velocity from the non-skidding portion of the vehicle
path.



Subroutine STARTZ calls subroutine SPINZ to determine
the separation velocity for each vehicle., If there
is no skidding, end of rotation and impact positions
have been set equal by subroutine QUIZ. In subroutine
SPIN2, the skidding path length is derived from the
distance from impact to end of rotation, and is zero

if these points are coincident, which occurs in cases
without skidding. (See the line after statement
number 220 in subroutine SPIN2 for the skidding path
length computation.) Statement number 345 in subrou-
tine SPIN2 jumps to statement number 665 if the skidding
flag is not set, as occurs in cases without skidding.
Statement number 665 changes the value of S1D to zero,
This value, the residual linear velocity, was derived
from the non-skidding path length in subroutine START2,
Statement number 670 assigns a zero value to S8DOT,

the resultant separation velocity, when S1 and S1D

are zero., This sequence of steps produces separation
velocities of zero for the non-skidding vehicle, and
leads to the division by zero in subroutine VELCHK.

It was Jjudged that statement number 665 in subroutine
SPIN2, which resets S1D to zerc in the CRASHZA code,
was in error in these cases. Statement number 665
was changed to a "Continue” statement to correct the
problem. The division by zero in VELCHK ceased when
this change was made.

Trajectory Simulation Error - There is a coding

problem in the USMAC subroutine of both the CRASEZ and
the CRASH2A programs. This problem is similar but not
exactly the same as that described in Task 4.F of the
contract. When activated by the user in response to
question number 31 {CRASHZ) or 32 (CRASH2A), subroutine
USMAC performs & time history simulation of the spinout
for each vehicle in a collision. Subroutine USMAC
accepts the separation velocities computer by subrou-
tine SPIN2 and uses TRAJ, RKING, and DAUX subroutines
to simulate the spinout trajectory. If the simulated
trajectory does not end with the vehicle at rest

within a specified time limit, subroutine USMAC sets a
flag and returns control to the calling program, This
condition is denoted by "timing out” in the CRASH output
displays.

If a simulated trajectory ends within the time limit
allowed, several errors are computed bv comparing the
simulated results with the measured results entered
by the user. The five error terms are:



E{l) = rest position distance

E{2) = end of rotation position distance
E(3) = rest position heading angle

E(4) = end of rotation heading angle
E(5) = point on curve distance

Each error is computed as a ratio of the simulated and
measured values. This can lead to problems when the
divisor is zero. In the present versions of CRASH2

and CRASH2A divisions by zero occur which lead to fatal
execution errors.

In both CRASH programs, there is a sequence of state-
ments at the conclusion of the QUIZ routine which set

the end of rotation point to the same location as the
impact point when the user has specified no skidding.

In these cases, the impact to end of rotation distance

and the heading angle chandge are both zero. In the CRASH2
program these zero values cause divisions by zero when

the error terms listed above are computed,

The CRASH2A program includes some protection against
division by zero in some, but not all, cases. If rota-
tion has been specified, but no skldding, the wvariable
TEMP5 will be set to a zero value and then used as a
divisor in the statements two lines beyond statement
numbers 460 and 510. TEMP5 is the difference in heading
between impact and end of rotation, which is zeroc in
cases without skidding {(since subroutine QUIZ has set
the impact and end of rotation points equal}.

It was noted that this problem could arise whenever the
difference in heading between impact and end of rota-
tion is closed to zero, regardless of the distance
involved. Three different cases are possible in +he
computation of the ratio between the predicted and the
measured heading change between impact and end of
rotation.

l. The predicted difference could be close to zero,
in which case the ratio would be close to zero,

2. The measured difference could be close to zero,
in which case the ratio would be very large and
likely to overflow,

3. Both the measured and predicted values could be
small, in which case the ratio value would be
unpredictable.



Case 2 is causing the problems in the present RICSAC
runs, but the other possibilities should be allowed
for in resolving this problem.

Several solutions to this problem have been proposed.
CRASHZ could be improved to the degree present in
CRASH2A by duplicating the CRASH2A code with appropriate
changes; however, this §till leaves the CRASH2A weaknéss,

Two approaches have been outlined to the CRASHZA problem
at this point., One is to further refine the error com-
putation routine to handle the three problem cases
described above. This could be accomplished in a manner
similar to that in which other computations in the
neighboring pieces of code are protected.

Another approach is to study the situation which allows
the flag for rotation to be set when the skidding flag
is not. There is some evidence in the program that
rotation is considered to be a type of skidding, and
consequently should not occur unless skidding occurs,
The elimination of rotation when there is no skidding
does not preclude heading changes, according to the
program logic. In the RICSAC test cases which caused
execution errors on CRASH2A, elimination of the rotation
flag allowed each case to run successfully,

Further study of the variable definitions and program
logic is necessary to indicate the best resolution of
this difficulty.

SPINZ Zero Values - On some of the RICSAC runs executed
on CRASH 2A, the impact speeds, speeds along the line
between the centers of gravity, and velocity changes
based on linear momentum were output as zero for one

or both vehicles in the collision. This problem appeared
in cases 3, 5, 11, and 12. The problem may be in one of
two places, either the subroutine PRINT or. the program
logic invoked when the velocity vectors of the two vehi-
c¢les are offset less than 107 at impact., Further exami-
nation of these occurrences is recommended; although
they did not prevent execution of -the tegt runs, some
results may be questionable.



6.0 CONCLUSIONS

It 1s apparent from the results of these tests that significant
differences exist between the results of the CRASHZ and CRASHEA
programs executed with identical input. The coding problems
that have affected the proposed comparisons should be resolved
to facilitate the evaluation of each programn for accuracy of
results. The need to resolve these difficulties is especially
important to permit a comparison of the trajectory simulation
between these two versions of the CRASH madel,






APPENDIX C

RESULTS OF TASK 4



INTRODUCTION

This report summarizes the results of Task 4 of the CRASHZ program
maintenance contract. The purpose of Task 4 was to identify, verify,

and correct programming errors in the CRASH2 code.

Task 4 encompassed nine possible errors in the CRASH2 code and an
analogy to one of the nine which might appear in the CRASH2A revision
of the CRASH2 program. Several additional errors were located and
corrected during the performance of Task 4. These findings are

included in this report.

Throughout this report basic familierity with the CRASHZ and CRASHZIA
programs has been assumed on the reader'ts part. In addition, it
would be very helpful to refer to a listing of the program code in

conjunction with this document.

Several interactive runs of the CRASH2 and CRASH2Z2A programs are
included with this report. These runs were selected to display
the problems considered in Task 4 and to demonstrate the corresc~

tions which were applied.

Within Task 4 are Tasks A-I. The order of presentation of the Tasks
(A-1) in this report has been altered to conform to the logical flow
of the CRASHZ program. Tasks B, C, D; and G concern problems with
the user interrogation and input processing QUIZ subroutine. They
are listed first. Tasks A and I involve subroutine DAMAGE, which
is the first analysis performed by the program on the user supplied
input. THese results are next in this text. The spinout analysis
problems described in Tasks E and H follow the problems with sub-
routine DAMAGE. Tasks 4.F.1i and 4.F.ii concern problems with sub-
routine USMAC, a principal part of the trajectory simulation, which
is optionally invcked by the user to verify and improve the resuits

of the spinout analysis.



B. Subroutine QUIZ, Statement 3305, IF IFLAG(2).EQ.Z;.
(IFLAG cannot equal 2).

Statement 3305 in subroutine QUIZ 1is presently coded:
3305 IF (IFLAG(2).EQ.2) GO TO 3315

The variable IFLAG(2) signais whether an End of Rotation
(EOR) point has been included in the CRASHZ input data.
The possible values of IFLAG(2) are 1, indicating that an-
EOR point has been included in the data; and 0, indicating

that no EOR point has been entered.

IFLAG(2) is initially set equal to one, by a statement six
lines past statement 104. Statement 3050 sets IFLAG(2)

equal to zero if question 19 (8kidding Stop Before Rest?)

is answered 'NO'. A statement six lines past statement

3160 sets IFLAG(2) equal to one if acceptable EOR coordinates
have been entered in response to guestion 20 (End of Skidding
Coordinates?). Hence, at statement 3305, IFLAG(2) will egual

one or zero, but not two.

Statement 3305 should be corrected to read:
3305 IF (IFLAG(2).EQ.1) GO TQ 3315

This coding will branch to the appropriate version of guestion
22 (Point on Curve?) dépending on the presence of an EOR
point as signaled by IFLAG(2}.

Statement 3300 is also in error in the present CRASH2
program. The current version reads:

3300 GO TO (3305,3320,3320) ,ICODE

This computed GO TO statement should be indexed by the vari-
able MENU rather than ICODE. This statement is designed to

select the short or long form of guestion 22 depending on



the type of CRASH2 run which is in.progress (full, abbre-

viated, or rerunj. It should be corrected to read:
3300 GO TO {3305,3320,3320) ,MENU

C.  Subroutine QUIZ, Statement following statement 5650, o
GO TO (5600,5600,666) ,MENU; (the first 5600 should be 5700).

The statement following statement 5650 reads:
GO TO (5600,5600,666) ,MENU '

This statement is executed following a default response to
question 45 (Side Damage Depth #2). The present coding will
cause question 45 to be presented repeatedly when a default

response occurs.

Instead, the QUIZ subroutine should branch to question éslif
a default response occurs. Question 46 begins at statement
5700. Therefore, the corrected statement following statement

5650 should be:
GC TO {(5700,5700,666) ,MENU

The statements three and four lines after statement 5630 both

read:
IF (ICODE.EQ.2) GO TO 5660

These lines are identical and sequential, hence one should be

removed.

D. Subroutine QUIZ, Statement 6011; Question 49 of the
abbreviated input should involve Vehicle #2.

As currently coded, the short form of question 49 prints this:

49. END DAMAGE MIDPOINT OFFSET #2

C—-4




The current text does indicate that Vehicle #2 is involved.
This gquestion 1s entirely analogous to the same gquestion asked
concerning Vehicle #1 which is coded at statement 5911, Thus,

1t does not appear that any changes are required.

G. Subroutine QUIZ, the statement following statement 6480
is a GO TO 6500; this should be a GO TO 6400 to allow a
correction to an "outlandish response.”

The statement following statement 6480 is now coded:
GO TO 6500

Statement 6480 prints an error message when the direction of force
angle entered in response to question 53 (Principal Force Angle #17)
exceeds 360°. After the error message 1is displayed, the program

as coded skips to the next guestion, which begins at statement 6500.
Instead, the program should repeat the presentation of guestion 53
to permit a correction by the user. To accomplish this, the
statement "GO TO 6500" should be changed to read:

GO TO 6400

A, Subroutine DAMAGE--"CDC only" run cannot be performed if
Vehicle #1 alone has CDC only.

A test run was made using the input data from RICSAC test number 8,
For Vehicle #1, only a VDI was supplied. For Vehicle #2, detailed
damage dimensions were supplied. This input produced no problems,
and the result is included as Task 4A, Example 1 (see Appendix].



A second run was made to test the reverse situation, with
complete damage dimensions for Vehicle #1 and a VDI only
for Vehicle #2. It was impossible to run this test suc-
cessfully, because of the problem described in Task A4AC
above. The error in the statement after 5650 repecats
guestion 45 when a default response is entered, thus it is
impossible to proceed past question 45 without supplying
some data. The effect of this pioblem is illustrated

by Example 2 (see Appendix).

A third attempt was made after correcting the problem in Task
with VDI only supplied for Vehicle #2. This run was suc—
cessful, and is included as Example 3 (see Appendix}). An
examination of the DAMAGE subroutine has revealed no other
restraints on similar runs of this type, with complete infor-
mation on one vehicle and a VDI only for the other. In all
cases, subroutine DAMAGE constructs default values for all
required variables based on the user supplied vehicle class
and VDI. Then, any additional data that is available is
used in place of the default values. Fach vehicle is
analyzed identically within subroutine DAMAGE; thus, there

is no apparent reason that sufficient data for one vehicle

would not be sufficient for another.

I. Subroutine DAMAGE-~The value for D can change from one
rerun to the next; investigate the cause of this
phenomenon.

The input data from MRA test #1 was used for a series of runs

to investigate this phenomenon. The results are displayed

as Example 4 (see Appendix;. (Example 4 is also a test run
for Task 4H.} One run was successful, with detailed damage
dimensicns for both vehicles. Then a rerun was made, to

A

check for changes in the value of L. 0Only the Ligle was

changed for the rerun. The values for D for Vehicle #1

4,



and #2 are the same in the original results as in the rerun
(Dl = -25.5", D2 = =23.4"). A second rerun with ancther
title again produced the same D values.

An-analysis of subrbutine DAMAGE éuggests no apparent altera-
ﬁion of D values from one rerun to the next. The user entered
value for the moment arm D ig stored as the variable DD(I}) for
each vehicle. Subroutine DAMAGE accesses DD in common area
CRASH, where it has been stored by the input suvbroutine QUTZ.
Subroutine DAMAGE uses another variable D{I) to contain the

adjusted value of D used in the damage-based calculations.

At the third line after statement 10 in subroutine DAMAGE, D{I)
is set equal to zero. DI(I) is assigned a value based on the
VDI at one of the following statement numbers: 1230, 1240,
1280, 1285, 1290, 1295, 1510, 1525, 1550, 1555, 1560, 1565,
The assignment of D(I) depends on the type of collision damage

present, according to the entered VDI.

At statement 1931, D(I) is set egual to the wvalue DD{I), if
DD(I) has been entered by the user. This replaces the VDI-
based D value with the measured D value stored in DRIy, if
the measured value is available.

At statement 2000, the value of D(I) is adjusted by a facto

P

derived from the other damage dimensions. The value of DT
is not affected. 1In fact, the user éntered value DD{I} is not
assigned a value by any statement in the DAMAGE subroutine.
The variable D(I) is reassigned by subroutine DAMAGE, but it
is reset before a rerun occurs. Thus, it is difficult to
identify a source of changes in the value of D from cone rerun

t¢ the next.



One possible source of confusion on this subject lies in
the out?ut display of the CRASH2 program. In the detailed,
full printout of results, a value labeled "D" is listed in
the summary of damage data section. The source of this
value is the variable D{(I), which i1s the adiusted value

of D used in the damage calculations. The user entered
value of D, which is stored as DD(I), is not printed out,

though it is stored from one rerun to the next.

In the CRASHZA revision of the CRASH2 program, this ambi-
guity has been reduced by printing both DD(I} and D(I) for
cach vehicle., In the CRASH2A printout DD(I) is labeéeled

D and D(T} is labeled D'. '

H. CRASH2 produces a spinout error message on Calspan test
MRA #1: test NHPEA overlay to discover the reason for
the spilnout error detected. '

The input data for MRA #1 was obtained from a printout of
several CRASHI runs titled 'CRASH3 Checkout Runs With
Diagnostics' provided by Mr. Thomas Noga of NHTSA. MRA #1

ig the first test run in this series.

When this data was entered into the CRASHZ program, the pro-

gram executed successfully with no sgpinout error messages.

At Mr. Noga's suggestion the same data was run on the CRASHZA
revigion of the CRASH2 program. Again, no spinout Crrors

appeéred.

The results of test MRA #1 on three versions of the CRASH pro-
gram are summarized in Table 1. The test run on CRASHZ ig
included in this report as Example 4 (see Appendix) . The fest
run on CRASHZA is included as Example 5 (see Appendix). The

CRASH2 resulte were obtained from the vprintout deszcribed above.



TABLE 1
RESULTS OF MRA TEST #1

CRASH2 CRASHQA- | fCRAéﬁS_.

Vehicle #1 Impact  fwd. 37.1  _3§.1§;. 376
lat. - 2;2_'_' - -0.2

AV tot. 36.9  37.6 38.7

long. -36.6 ~3f;5 | -38.4

lat. 4.7 | 2.3 4.9

Vehicle #2 Impact fwd. 37.3 38.1 . 35.6
lat. -- 0.0 1.8

AV tot. 28.6 _29}3' 30.2

1ongQ -28.6 ~29.3 -29.9

lat. 2.2 1.7 3.8

Notes: All speeds are miles per hour.
CRASHE3 results are from CRASH3 checkout runs prOVlde by NHTSA



Notice in Table 1 that. the results from the three versions of
CRASH produced very similar results with this data. At this
time, the actual measured data is not available for inclusion

in this report.

E. Calculation of path length in cases with curved path
but no rotation specified; the path length calculated
presently may be grossly overestimated.

The total path length travelled by a vehicle in the CRASHZ
model is the sum of the skidding path length and the non-
skidding path length. The non-skidding path length is computed
in subroutine START. The skidding path length is calculated

in subroutine SPINZ.

In subroutine START the variables DIST1 and DIST2 are used to
store the non-skidding path length for Vehicles #1 and #2.

Tf no End of Rotation (EOR) point has been entered for a

vehicle, DIST1 or DISTZ2 is set to zero. If an EOR point is
present for a vehicle, as signaled by the variable IFLAG(I)

being equal to one, DIST1 or DISTZ is set equal to the straight-
line distance from the EOR point to the rest point. This assign-
ment occurs at statement numbers 1020 and 1040, for Vehicles

#1 and #2 respectively.

The skidding path length is calculated in subroutine SPIN2. If
there is a curved path, as indicated by the flag JCV, the path
length is computed by a series of statements beginning four
statements past statément 525. In these cases, with path
curvature, the path length is determined to be the arc length
along a circle passing through the impact and end of rotation
positions of a vehicle. The centex of this circle is computed
in subroutine START. The variable S1 is used to store the arc
length from impact to end of rotation. S1 is then used as

the skidding distance in subsequent SPINZ calculations.



The presence of rotation, as signaled by the variable IRT(I)
for either vehicle, has no effect on the path length computa-
tion. However, the presence of an entirely nonuskiddingitra—
jectory for either vehicle will lead to an erroneous path

iength computation as detailed next.

If there is no skidding, the end of rotation point is set
equal to the impact point at the conclusion of subroutine
QUIZ. When a curved path is specified, the arc from impact
to end of rotation is zero, since these points are identical.
Subroutine SPIN2 also evaluates the arc from the impact point
to the point on the curved path which has been entered by the
user. SPIN2 compares the arc of the ECR point with the arc
to the peoint on the curve. This test occurs at the statement

immediately preceeding statement 530.

1f the arc to the point on the curve is smaller than the arc
to the EOR point, it is assumed that the point on the curve
lies between the impact and EOR points, as it should. Tn
this case the value assigned to S1 based on the computed

arc length from impact to EOR is passed for further spinout

analilyses.

If the arc to the point on the curve is bigger than the arc
to the EOR, the program assumes that the arc to EOR has been
measured around the circle in the wrong direction. In this
case, the value of Sl is reset to the length of the entire
circumference of the circle on which the trajectory lies,
minus the original Sl value. This substitution measures

sl in the opposite direction around the circle, in effect.



Tf the arc from impact to EOR is zero, as happens in all
cases without skidding, the arc to the point on the curve
will invariably exceed it. Then, the original value of
51 will be replaced with the entire circumference of the
circular path minus the initial S1 value of zero. This
leads to the replacement of a correct value of zero for
the skidding path length with a much larger, erroneous

number. -

To correct this problem, the following statement should

be inserted three lines after statement 525:
IF (JSKID(JVEH) .EQ.0) GO TO 200

This coding change will prevent an incorrect curved, skidding
path length from being computed when in fact the skidding path
length is zero since no skidding occurred. The coincidence of
the impact and EOR péints will result in the proper value of
zero for S) being assigned at the statement immediately

following statement 200.

The analysis of this problem brought to light the fact that
there is no provision for a curved path during the non-
skidding portion of a vehicle's trajectory in the current
CRASHZ program. ZInvestigation of the CRASHZA program shows
that this procedure is unchanged.. This defect will be dealt

with in forthcoming work on the CRASH programs.

F.i Subroutine USMAC; if guestion set 11, 14, 16 and/or
18, 21, 23 are answered with a "No," a simulation run
is impossible. The "end-of-rotation point" and the
"point on the curve' are set to the coordinates of the
point of separation. The computation of the error terms
F(2) and BE(5) in USMAC then involve a fatal divide by
Zero erroxr.




F.ili Check CRASHZA for the same error.

This problem has been discussed in Part 3 of Section 5 of
the report on Task 3 of this contract, under the paragraph
titled "Trajectory Simulation Error." The problem boils
down to several divisions by zero which can occur in sub-
routine USMAC when the impact and end of rotation points
are coincident, a situation that occurs in all cases

without skidding.

Divisions by.zero cause FORTRAN runtime execution errors

and immediate termination of the CRASH2A program. CRASHZA
has some protection against this problem. This protection
was extended and completed by the introduction of twelve
additional statements in subroutine USMAC. These additions
are displayed in Figure 1, which is a section of the modified
code from subroutine USMAC in CRASH2A.

Example 6 (see Appendix) 1s a test run using the modified
version of subroutine USMAC. This case will not run on the
unmodified CRASH2A program free of errors, but executes suc-

cessfully on the modified version.

The protection against undefined divisions now availablie in
subroutine USMAC of CRASH2A was added to the USMAC subroutine
of the CRASH2 program to prevent similar problems. The new
coding, displayed in Figure 2, was added to CRASHZ by replacing
the appropriate section of subroutine USMAC in the CRASHZ code.
It is identical to the CRASH2A code with the exception of.
several statement numbers which have been altered to conform

to CRASHZ reguirements,



Figure 3 is a second piece of code taken from CRASHZA and
inserted into subroutine USMAC of CRASH2. This code pre-
cludes undefined arc—tangent function evaluations when the

end of rotation and impact points are identical.

Example 7 (see Appendix) is a test run on the modified ver-
sion of CRASHZ. This case fails to run due to execution

errors on the present version of CRASH2.



FIGURE 1. CODING CHANGES IN SUBROUTINE USMAC,
' CRASHZ2A TRAJECTORY SIMULATION



MULATION HAG FINTSHEL
DLULATE THE :
MU CURUED FATHY

FCRRE X R ok R )R )
HEF Y HRF - KBE Y 4

415
b CYARYLFR Y R Y LR Y LFP D)
CY L= YSF YR Y LF =Y GF) )

420

Gl 10

420

ﬁ*

T
Py

TF O CIRTCIVEM) GBE. ©) GO TO 450
GO B0

AB0 TEMIS = Pg
o BT A4S0

LS T A TRTCIVEH 1)

FOUEEY LAND. (ARBITEMP4Y LT, 0353

A LT O30 B0 TO B4E
CYEMP A TEMEFE
FOJVEHDY LER. O GOTo ARn
FHIGF

B} GOOTO 480G

DEFHFLOAT (LN CAEH D

o I Y Fo Lo

T3oARO
I ¢

S0

CTREMPEY LT O35 G0 TO H44

i CTEMFA/TEMPE)

BOOTO
TEMF 3 FGIRF
Fe 0.Y 0 GOOTD H10
b6 REED
boARBERRFLOAT CIIND CIVEH Y

P T R

B LT JOBN)Y JAND. CABRSCTEMPAY LLT. 03N

3

TO 543

'I) ¢Pt Uﬁ GOOTO ORI
FLTLF C-16 ;



B

S o)
* 0

1}

nisT

7
':} a '}

T &30

L OAT (T
AT CIINDCIVEM )

T 544




FIGURE 2.

TRAJECTORY SIMULATION CODE FROM SUBROUTINE USMAC
IN CRASH2A, AS MOLCIFIED AND INSERTED IN CRASHZ
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FIGURE 3. ADDITIONAL CRASH2A TRAJECTORY SIMULATICN CODE
ADDED TC CRASHZ2Z TO PREVENT ERRORS

T=21
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EXAMPLE 1. VDI ONLY FOR VEHICLE #1

C-24
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EXAMPLE 2. PROBLEM WITH DEFAULT DAMAGE DATA FOR VEHICLE #2



RUING CRA2LIM

CR&ZLGM 13319 JUN G T80

ENTER TYFE OF DRASH RUNT

COOMPLETE « ARBREVIATED s RERUNy PRINT » BATCHy SMAC » TR ENDD
T

WILL THE INPUT FOR THIS RUN BE IN METRIC FORMY
(ANSRER YES OR NDJ
FN

Lo TETLE®
TRIEAL RS WITH VDI ONLY FO

v VEHTCLE #2

Se BIZE DATEGORIEGT

Ly

.o UNTe i
FLRFDEW]

g Wty 43
FOIRYERD

S AUTUAL WEIGHTEST oY OR N
ey

o WELGHT i
FR47G
7o WEIGHT 42
B REST & IMFACT? (Y OR N
37, DAMAGE DIMENSTONS?T (Y DR M)

Al BRI DraMAaGE WIDTH 1

A2, EMD TAMAGE DEPTH #1
]

P
oy
O 3 {{)

A% EHD DAMAGE MIDPOINT OFFSET 4
A4 BIDE DaMaGE WIDTH 42
A BEDE DaMalE DEFTH 42
A%, BTHE DaMaGE DEFTH 42

A0 BIRE DAMAGE DEFTH 42 C=30



EXAMPLE 3. VDI ONLY FOR VEHICLE #2
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EXAMPLE 4. MRA TEST #1 ON CRASH2 PLUS RERUNS
TO TEST FOR CHANGES IN D
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