THE SIMULATION MODEL OF AUTOMOBILE COLLISIONS (SMAC) OPERATOR'S MANUAL

EDC Library Ref. No. 1041

No.		

THE SIMULATION MODEL OF AUTOMOBILE COLLISIONS (SMAC) OPERATOR'S MANUAL

Prepared by
Paul L. Solomon
Accident Investigation Division
NHTSA
October 4, 1974

CONTENTS

		<u>Page</u>
I.	INTRODUCTION	1 - 2
II.	AN OVERVIEW OF OPERATING THE SMAC PROGRAM	3 - 4
III.	INPUT FORMAT	
	 A. Discussion B. Sample Computer Printout of Input Card Images C. Annotated User's Sheet D. User's Sheet 	5 6 7 8
IV.	DESCRIPTION OF INPUT VARIABLES	
	A. Detailed Input Variable DescriptionB. Brief Input Variable Description	9 -19 20 - 25
٧.	OUTPUT FORMAT	
i	A. DiscussionB. Sample Computer PrintoutC Sample Graphic Display	26 -29 30 -35
VI.	SUGGESTED VALUES OF PARAMETERS	37 -39
VII.	REFERENCES	40

AN OVERVIEW OF OPERATING THE SMAC PROGRAM

The SMAC program user specifies values of input variables describing the vehicles, the accident scene, and some computation details.* The computer will return a printout giving position, heading, vector and angular velocity, as well as tire tracks, at regular time intervals throught—out the collision sequence. If desired, a graphic display of the simulated collision will also be created by a plotting subroutine. If the user is trying to simulate an actual collision, he will note differences between the actual and simulated collision, and modify the input data to obtain a better match.**

To clarify the data .input procedure, we shall divide input data into four categories: vehicle properties (length, width, mass, etc.). calculation constants, initial conditions, and control inputs. Where particular vehicles are being simulated, most properties for any given make and model of car car be found in a reference manual (see reference 1). Otherwise, typical values such as those provided in the attached Table I may be used. Usually, values for vehicle properties are not changed in the iteration process mentioned above.

^{*} We suggest using an input data form provided with the manual to record your decisions prior to transferring them on the computer (See Section III(D)).

^{**} The art of modification is a subject in itself. One suggestion is to modify one variable at a time in order to attribute the total change from the last run to the present run to that sole modification. Understanding the theory of the SMAC program and understanding how a field investigator chooses a value for a variable will give you much insight into the modification phase of SMAC.

Calculation constants, such as the time interval used, the acceptable error in balancing collision forces, etc., are explained individually in this manual, and suggested values are given. Generally, changes in these variables will only have a secondary effect on accuracy of calculation, expense of run, or specific error messages discussed subsequently.

Often, the user will wish to simulate an accident in which only part of the information, say the final resting positions and tire tracks, is known. He will vary the input data, trying to obtain outputs corresponding to collision. The input variables of interest are the initial conditions (position, heading, velocity) and the control inputs (braking, accelerative traction, and steering). Once the skid marks and final positions match fairly well, the user will presumably have obtained a good approximation of the initial positions, headings and velocities of the cars, if the vehicle properties used are accurate.

SECTION III

INPUT FORMAT*

A. Discussion

The first two records (e.g. cards) of a data deck for input to the SMAC program (if a data file is used, one line = one record) are heading records: these are for user convenience and contain no calculation data. Information placed in these records is printed at the top of each page of output to identify the printout. While they may be left blank, these records must not be omitted.

Next come 14 numbered records giving calculation input data. (In certain cases discussed later there will be additional, unnumbered records following records 8 and 11. These are the torque and steering tables.) The numbered records 1 through 14 are formatted 9F8.0, I8. (A remote time-share terminal user has the capability to input the input records in a free format.) Calculation data appear in the 9 floating point fields. A decimal point must appear in each floating point number. The card identification number appears, right justified, in the final integer field. After record 14 a final record, blank except for the number 9999 in columns 77-80, completes the input data. A sample computer printout of the input card images of a run follows in Section III B.

^{*}Section III is subdivided into four parts which should be studied together. Once SMAC format is absorbed, the user is ready to learn the definitions of the input variables (i.e., Section IV).

Sample Computer Printout Of Input Card Images

. ස

6

JAN. 1. 1974		. 200	7		-0		3	•		•						10		12	គ	41	0000								*	,				,	***************************************	
2.	•	٠.	-100. 35.7	-119.6 39.6	••			* •) 	•	-861*	-861.	-574	-574.					***								•			* * * * * * * * * * * * * * * * * * * *		* *			
0-:-0	•		95.7	100.5						-	,	-361.	-861.	-574.	-574.			.0003	. 55						1	. •				,					*****	
0456-80-100 -005)) (0	•0	•				• 1) (-861.	-863	-574.	-574			7	. 50.						 				4					•		
.,	316.8			9.01 8.5	in i	•	ç	•		C) !	-e41.	-851.	-576-	-574.		:		30.		J		•				-									
. 361	Ü	c	19762.5						!		0	-861.	-861.	-576-	74.	•	•	70.	ស	£.														•		
	c	1117.	57.7	63.1	10101	50101	1	• · ·		e e	2	Æ 1	€	ς, ,	8			100	8.	34.7381		i 1		•	;				-							
ر		• 0	F 4. A	53.	-10250.	1.2			e e		2,1	-851.	-801.	-574	-574.	.		.0.	5.	3.54.17-3		1									F					
٠	· .	1 4 7 .	5.2	(·		1000	6	0 0	4	4641	<	-1841	-861.	-574.	-474.	ċ		• 0	2.	.06421		:									:	٠,			1	

າງ

	,		Indus o manus			····	*
	•	Connents			4 [13 co), 30 4 [13 co), 30 4 [13 co), 80 13 co), 80	- 'n sole, 80	* In cols. 79, 50 * In cols. 79, 56 * In cols. 79, 56 * In cols. 79, 50
· .		10 73-50	blank, in		2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	013.77	
		9	is left blo	100 mm			fields fields fields fields
	•	8 57-64	a line			1 fields	201 fields 201 fields
	H (SWAC)	7 49-56	r run. Tf			Jo will	line-a max mum of 201 fields line-a par mum of 201 fields
	INPUT DATA FORM (SWAC)	6 6 41-48	perticular		A CONTRACTOR OF THE CONTRACTOR	cr linea raxis	es line-a max mum of
	*	5 5 33-40	identifying a		1	wide ocr 1	
		3	for			characters w	characters wide p
• • •	100000		characters format, it			are 10 chr	fields that are 10 characters wide p
# # # # # # # # # # # # # # # # # # #	60	2 9-16	of 30 with			that that	fields that
		- S	2 lines Recoing			7 (1919)	7 fields
		Number Number			W. As a Was supplementary of	nere e e un a un a un	4
1				•			•

																															8
			•		-								•						•												
	Γ	_	П					T	ī	Τ-	Γ	-	- _T	<u>-</u>	T	 -	Т		i		- T		-	T-	T		j				- }-
																														-	
			33.5											***************************************																	
		-	\$11.54.23																									***************************************			-
		Ì					Ç.,	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	-	3 C	7	, (C)		_ _] <u>.</u> _	-	න :					3		<u> </u>	<u> </u>	 =				-	_
š			10						***************************************	-					` . }				* :	1			• .				,	1			
								1	\dagger					- 1-		-		- -			—	 	T	; -	<u> </u> 	 		:			+
		SHEET	6				.				i. 1.																				
	1	- 1	8									,										-							1		j
		USERIS			-										***************************************				-							_					
			7				, s. s																					-			
		-									-							1				-		<u> </u>					-	-	
			ပ								-																				-
								+	-	- -	 	1						_			- -			-							_
			5																				-								
	-,	70.143	4	1										_		-				_	1	-	-	-	-				$\frac{1}{1}$	-	-[-
		ATION									_																				
·		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3													_			_		_	1	-	-	_				_		
		OF TRA						_			 	-				-					-	_				 				-	_
		42 AV V	2			÷																									
		MOTENTAL STATES AND THE STATES AND T	H						_ .		-					-		-			-	\neg				<u> </u>				-	}
																							-								
	ξ.	ر ا ، '	. i		·	أجبيب					. J	- '	اا	l.		1-	L	!	! <u>!</u>	L		J.	'			<u></u>	<u>. </u>				! .

NOTE: When a point is determined for reading the cursor, depress any alphanumeric key to record the point.

To restore the drawing to its original size, use the FUL command.

>FUL

2. Termination of Viewing

END - END should be the response to the prompt. The user will then be prompted with an *.

*END - END should then be the response.

3. Termination

If no further viewing is to be done, respond to the # with BYE

BYE

The system will respond with an accounting summary for this session, and the user will be logged off the system.

VIII. Reference Manuals

The following DAC-II manuals may be used as references:

- a) DAC-II HOST Manual
- b) DAC-II Edit Reference Manual
- c) DAC-II FASTDRAW/HOST Extended Features
- d) DSS Users Manual.

The following MCAUTO manuals describe DSS:

- a) DSS User's Manual
- b) IPF User's Manual

IX. Assistance

If there are questions concerning this program, contact:

a) Mike Gedera

(314) 232-6823

SECTION IV DESCRIPTION OF INPUT VARIABLES*

A. Detailed Input Variable Description

Input data variables are listed below in the following manner:

- (1) A pointer denotes the card and the field position within that card (e.g., the pointer 1:3 refers to card 1, field 3).
- (2) The variable name as it occurs in the program (e.g., DTTRAJ).
- (3) Where applicable, a symbol is used in analysis, usually a Greek letter with appropriate subscript.
- (4) An explanation of the variable is given.
- (5) Where called for, suggested values are given.

(Note ⁰ indicates zero, ⁰ indicates letter "oh").

- 1:1 TO The time, in seconds, at which the program starts. TO is arbitrary, and is generally chosen to be 0.0 for convenience.
- 1:2 TF The time, in seconds, at which the program ends. TF-TO=total duration of the run.
- The program approximates a continous, non-linear path in time and space by breaking it into small increments, taken as linear, rather than by a true line integral. DTTRAJ is the time interval of integration before, and again after, vehicle contact. This will generally be the largest time interval used (on the order of .05 seconds, smaller where forces or speeds are usually high), since changes are gradual and continous during trajectory.

[With this, and with all intervals, a smaller value will yield greater accuracy, but will also increase computer time and expense. In general, the accuracy desired will be greater when the user wishes to match a set of empirical data than when seeking to simulate a situation for heuristic purposes.]

1:4 DTCOLL This is the interval of integration, in seconds, during the collision, where large crash forces require a small time interval (on the order of .001) to obtain a good approximation.

^{*}It is recommended that until becoming "adequate" in the utilization of SMAC that the user rely on the detailed input variable description of Section IV(A) rather than the brief input variable description of Section IV(B).

1:5 DTCPLT	This is the interval of integration in seconds for the first 100 time increments immediately after vehicle separation. DTCQLT will generally be smaller than DTTRAJ (e.g., .01) since higher speeds and spin are often involved at this stage.
1:6 DTPRNO	The printout time interval in seconds.
1:7 UVMIN) 1:8 PSIDMN)	If the absolute value of the total vector velocity in inches/second is less than UVMIN for both vehicles, and the absolute value of the angular velocity in degrees/second is less than PSIDMN for both vehicles, the run terminates. If no minimum value cut-off is desired, these can be set to 0.0. (1 mph = 17.6 inches/second)
1:9 IVEHO	Number of simulated vehicles (1. or 2.) if IVEHO = 1., program ignores inputs on records 3, 5,7,9 & 11; however, these records must be included in keeping with format.
1:10	The numerals 01, 02, , 14 go in columns 79 and 80 (see Section III(C)). This item is omitted on subsequent record explanation.
2:1 XCP10 X'c10	The X' coordinate, in inches, of the center of gravity of of vehicle 1, (V1). The smaller vehicle should be entered as V1 Collision forces are calculated in a clockwise sweep of V1. The force calculations are less accurate in the vicinity of a narrow intrusion; therefore, accuracy is improved when V1 is the smaller vehicle. A fixed Cartesian coordinate system is used, with the positive X' axis shown pointing upward, and the positive Y' axis to the right. Angles are measured clockwise from the positive X' axis.
2:2 YCP10 Y'c10	The Y'-coordinate, in inches, of the center of mass of VI. (See also comments on XCP10).
2:3 PSI10 Ψ10	The heading angle, in degrees of V1 measured clockwise from the positive X' axis.
2:4 PSI1DO [†] 10	The angular velocity, in degrees/second of V1. Taken to be positive when rotation is clockwise.
2:5 U10 ^Ψ 10	The initial forward velocity of VI in inches/second. The longitudinal component of the total vector velocity of VI.

2:6	V 10		The initial sideway velocity of VI in inches/second with right taken as positive.
3:1	XCP 20 YCP 20 PSI 20 PSI 20 U20 V20	X¹C20 Y'C20 Ψ20 Ψ20 Ψ20 V20	Same as Card 2; except for vehicle 2.
4:1	Al	aj ·	The distance in inches from the center of gravity of VI to the midpoint between the front wheels (see Table I for typical values).
4:2	Bl	91	The distance in inches from the center of gravity of VI to the midpoint between the rear wheels, taken as positive (see Table I for typical values).
4:3	TRI	Т	Average tread width in inches, i.e., distance between left and right tires, averaged over front and rear pairs (for typical values, see Table I).
4:4	FIZI	Izl	Yaw inertia, in $1b\text{-sec}^2$ -inches, of V1. This is a measure of the torque needed to induce a given spin in V1, and depends both on the total mass of the vehicle and on how far this mass is, on the average, from the center of gravity. For typical values of mass and of k^2 ($I_zI = k^2 \times M$), see Table I.
4:5	FMASS1	M ₁ -	The total mass of VI, measured in lb-sec ² /inch. If vehicle weight in lbs. is known, mass in lb-sec ² /inch can be found by dividing by 386.4 (for typical values see Table I).
4:6	PSIR10	Ψ <mark>R</mark> Ί	The rear axle steer angle in degrees; angular displacement from normal orientation, with clockwise displacement taken as positive (thus for undamaged rear axle = 0.0).

4:7 XF1 Distance in inches from center of gravity of VI to the front end of the car body. (For typical values, see Table I.) 4:8 XR1 Distance in inches from center of gravity V1 to the rear end of the car body, taken as <u>negative</u>. typical values, see Table I.)

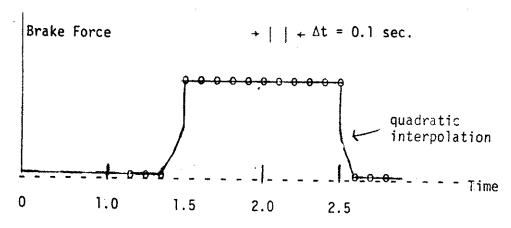
YSI Distance in inches from the center of gravity of V1 to the side of the car body; 1/2 total width. (For typical values, see Table I.)

5:1 A2 a2 b2 5:2 **B2** T_2 5:3 TR2 5:4 FIZ2 $I_z2)$ Same as 4:1-9 except for vehicle 2. 5:5 FMASS2 M 5:6 PSIRSO ψr2 5:7 XF2 XF2 5:8 XR2 xR2 5:9 YS2 **YS2**)

CSTF1(1) c11

Cornering stiffness for small angles, in lbs/radian, for right front tire of V1. When the tire is directed at an angle to the direction of motion, a steering force occurs in a direction perpendicular to the direction in which the tires are pointed. This force does not vary linearly with the tire slip angle, but relation is nearly linear for small slip angles. The nominal cornering stiffness is the normal force in pounds divided by the slip angle in radians for small angles. For larger angles the rate of increase of perpendicular force with increasing angle falls off as "saturation" is approached. The program handles this in a standard manner for all tires.

Typical values for cornering stiffness are -10200 1bs/radian. Cornering stiffnesses are input separately to allow the simulation of tire damage--a damaged tire which has lost its pressure will have a far lower cornering stiffness, perhaps 20 percent of that for an undamaged tire. Under-inflated tires will have somewhat lower cornering stiffnesses than the values given, but far greater than seriously damaged tires.


c ₁₂	Cornering stiffness, left front tire of VI, lbs/radian.
c ₁₃	Cornering stiffness, right rear tire of VI, lbs/radian.
c ₁₄	Cornering stiffness, left rear tire of VI, lbs/radian.
c ₂₁)	
c ₂₂	
١ ١	Same as 6:1-4, except for V2.
c ₂₄	
	Initial time in seconds for V1's Torque (braking or accelerating) inputs. When applying torque to V1 after the run has begun (TBTQ1>TO), at least three zero inputs prior to time TBTQ1 should be inputed. This is done to accommodate quadratic interpolations which require two end points and one turning point (thus 3 points).
	End time for torque inputs for VI in seconds. If control inputs for torque end in the middle of a run (TETQ1 <tf) (same="" 8:1).<="" after="" as="" control="" end="" input="" inputs="" insure="" reasoning="" should="" tables="" td="" tetq1="" three="" to="" with="" zero=""></tf)>
	Time increment for torque inputs, VI, in seconds. One value for torque is input each increment, so the size of TINCQ determines the fineness with which braking and traction can be described by the mathematical model.
	If this variable is set equal to zero, the program reads the torque input tables and includes them in the calculations for the run. If any other value is entered the program ignores card #8 and there are no torque inputs for VI. For cards #8-11, when the final variable is set equal to 0.0, the card is followed by tables, each consisting of from 1 to 29 unnumbered cards, formatted (7F10.0). Each table represents the control inputs for a single wheel. Accelerative torque inputs are positive, braking inputs negative, both are in pounds. The number of entries per wheel is IETQ1 - IBTQ1 + 1. Entries for each wheel begin on IETQ1 - TBTQ1 + 1. Entries for each wheel begin on IETQ1 - TBTQ1 a new card.
	C ₁₃ C ₁₄ C ₂₁ C ₂₂ C ₂₃

8:4 (Continued)

If a friction decrement with speed is used (item 12:7), at high speeds, friction and thus maximum possible tire force will be reduced. Also, if both steering and traction inputs are included for a given tire, the vector sum of these inputs cannot exceed the maximum possible force for that tire. If too large a force is entered, the program will substitute the largest possible value' (i.e., a value equal to the product of the weight on that tire multiplied by the coefficient of friction).

To illustrate the torque input process, an example is in order.

Example of Torque Input. It is desired to apply the brakes of the rear wheels of a 4,000-lb vehicle (VI) strong enough to lock those wheels during the interval from 1.5 to 2.5 seconds after the program starts. Brake forces are zero at other times. (Steering inputs would be handled in the same manner as this braking example.)

(Plus 3 cards for LF wheel identical to ...

8:4 (Continued)

(Plus 3 cards for LR wheel, identical to RR wheel)

Notice that the start and end times are three time increments before and after the brake pulse, respectively, to allow for insertion of three zero force inputs as discussed under 8:1 and 8:2.

Notice that the braking force input (-2000 lbs. on each rear wheel) exceeds the maximum friction force available at that wheel (approximately 1/4 of vehicle weight x friction coefficient). This is done to insure skidding. The program will combine this force vectorially with any steering forces present, and limit the resultant to the maximum friction force.

Tables for Card 8:

- (1) Traction (+) or braking (-) inputs, right front wheel, VI, in pounds force.
- (2) Same, left front wheel.
- (3) Same, right rear wheel.
- (4) Same, left rear wheel.

9:1 9:2 9:3 9:4 Table	TBTQ2 TETQ2 TINCQ2 NTBLQ2 es (1-4)	Same as 8:1-4 and subsequent tables, except for V2.
10:1	TBPSF1	Starting time for steer inputs, in seconds, V1.' (See 8:1; same format as torque inputs.)
10:2	TEPSF1	End time for steer inputs, in seconds, V1 (see 8:2).
10:3	TINCPI	Time increment for steer inputs, in seconds, V1 (see 8:3).
10:4	NTBLP1	If ≠0.0, program ignores card 10 and no steering inputs are used in calculations for V1.
		Steer tables are exactly like torque tables (see note on control inputs after card 8) except that values input represent tire angle, in degrees (left turn is negative, right is positive, straight ahead is 0.0 degrees). There are only 2 tables per vehicle since only front wheels are steered.
		Tables for Card 10:
		(1) Steer inputs, right front tire, V1, in degrees.
		(2) Steer inputs, left front tire, V1, in degrees.
11:1	TBPSF2)	
11:2	TEPSF2	
11:3	TINCP2	Same as 10:1-4 and subsequent tables, but for V2.
11:4 Table	NTBLP2) s (1-2))	

12:1 12:2 12:3 12:4	XBP(1) YBP(1) XBP(2) YBP(2)	x'B1 y'B1 x'B2 y'B2	These coordinates, in inches, define two points, $B_1 = (x'_{B1}, y'_{B1})$ and $B_2 = (x'_{B2}, y_{B2})$ in the plane of the tire forces. These 2 points determine a boundary line, dividing the plane into two zones which may be assigned different coefficients of friction. This allows the user to simulate a vehicle running onto a dirt shoulder field, etc., or any such situation which demands two adjacent areas of different frictional properties. The zone on the side of the line which contains the origin is defined as zone 1, and the other zone 2.
12:5	TUMX	μ]	The coefficient of friction in zone 1. The coefficient can be made to vary with speed (see 12:7); it is assumed independent of other factors within a zone. Use 0.7 for dry pavement, 0.3 for wet.
12:6	XMU2	μ_2	The coefficient of friction in zone 2 (see above).
12:7	CMU	сµ	The coefficient of linear decrement of friction with tire speed in seconds/inch. In general, the effective tire-surface friction coefficient decreases with speed and c_μ simulates this decrease. The effective friction coefficient, used in all SMAC calculations, is computed as μ effective = μ_0 - $c_\mu \nu $ where μ_0 is the nominal coefficient of friction, and is the tire speed. Thus, if no decrement is desired as speed increases, is set to 0.0. The recommended value is .0003.
13:1	DELPSO	Δψ	The interval between radial vectors in degrees. The SMAC program calculates all collision forces in a clockwise sweep about the center of gravity of VI. The sweep is broken into increments of size $360~\mathrm{A}\psi$ (DELPSO must be an integer). Too large a value of $\mathrm{A}\psi$ will cause inaccuracies, too small a value will exceed the program's capacity. The collision interface is handled in a table of up to 100 points. If more than 100 points are required to handle the damage area, the message "ISTOP = 9" appears on the printout. The suggested value is 2. degrees, which can be increased (e.g. to 3.) if the error message "ISTOP = 9" appears.
13:2	DELR \$ 0	Δρ	The increment of change of the radius vector in inches. (See explanation after card 13.) A value of around .2 is recommended.

13:3 **ALAMB** λ The acceptable error in intervehicle pressure equilibrium, in pounds/inch. Choose λ greater than $K_{f V}$ 1 times $\Delta \rho$ and also greater than Ky2 times $\Delta \rho$ (see explanation after card 13) e.g. for K_{V1} = 30., K_{V2} = 50., $\Delta \rho$ = .2, λ could be 12. 13:4 ZETAV The minimum relative velocity for intervehicle friction, ζv in inches/second. If, while in contact, the adjacent surfaces of the two vehicle move with respect to each other at a speed less than this, intervehicle friction is ignored. A value of around 5.0 inch/second is recommended. Load-deflection characteristic, in pounds/inch², of Vl 13:5 AKV(1) K_{V1} (see explanation after card 13). Values range from around 30. for subcompact cars to around 50. for fullsized. 13:6 AKV(2) K_{v2} Same as above, but for V2. 13:7 AMU μ This is the coefficient of friction between the two vehicles when they are in contact and the adjacent surfaces of V1 and V2 are moving with respect to each other (at a velocity greater than CV). The force tangent to the interface opposing the relative motion = ζ times the force with which the surfaces press together. A value of about .55 is recommended.

Note on $\Delta \rho$, λ , K_{V1} and calculation of collision forces:

As the body of a car is crushed, it exerts a force proportional to that crush. The SMAC program assumes that at any point on the interface between two vehicles, the pressures exerted by the two surfaces must be essentially equal. Since the simulation is two-dimensional, units for pressure are in pounds/inch. Since the pressure is (assumed) proportional to the depth of crush, with the car body assumed to be homogeneous, the load-deflection characteristic K_V is in units of pressure/inch of crush = (pounds/inch)/inch = lbs/in.2. Points displaced by crush forces are constrained to move along the radial line from the vehicle center of gravity to the initial position of the displaced point before damage occurred. The program simulates crush by adjusting each of the radii in increments of $\Delta \rho$ until the pressures exerted balance to within an allowed error of λ .

Since for solution stability there must always be a value of ρ tested for which the pressures balance to within λ , and the change in pressure per increment $\Delta\rho$ is $K_{V}\Delta\rho$, it is necessary that $\lambda > K_{V}\Delta\rho$ for both $K_{V}1$ and $K_{V}2$.

The program, in seeking equilibrium, will increment ρ by $\Delta\rho$ up to 200 times. If this is insufficient, the message ISTOP = 7 will appear on the output, and execution will terminate. If the condition $\lambda > K_V | \Delta\rho$, $K_V 2\Delta\rho$ was satisfied, then a larger value of $\Delta\rho$ is needed (e.g. to .3 inches) when adjusting $\Delta\rho$ or K_V , be sure to adjust λ also if necessary.

14:1	CO	Co }	Coef
14:2	C1	Ci	rest
14:3	C2	C2	the

Coefficients of assumed parabolic variation of coefficient restitution. The car body is to have some elasticity with the degree of restitution varying non-linearly with the degree of deformation. Recommended values are .06423, 3.5417 x 10^{-3} , and 4.7381 x 10^{-5} , respectively. (To fit in the field of 8 columns the latter two should be entered as 3.5417-3 and 4.7381-5, which are interpreted as scientific notation).

(15:10)

Two numerals 9999 appear in columns 77-80. Be sure all the numbered cards 1-14 have their number included, right justified, in the final integer field of each card.

B. Brief Input Variable Description

	•			,
Card No.	Program Variable	Analysis Variable	Definition	Units
. 1	TO	•	Start time	Seconds
	TF		End time	Seconds
	DTTRAJ	- · ,	Interval of integration at beginning and ending of run	Seconds
	DTCOLL	•	Interval of integration during collision contact	Seconds
	DTCØLT	-	Interval of integration for 100 time increments subsequent to separation	Seconds
	DTPR NO	•	Output time interval	Seconds
	CUVMIN	• •	Vector velocity test for stop	Inches/Sec
	PSIDMN	= .	'Angular welocity test for stop	Degrees/Sec
	IVEH0	ear ear	Number.of Simulated Vehicles (1.0 or 2.0)	- -
2 .	XCP10	X'c10	Vehicle 1, initial X'	Inches
·	YCP10	Y'c10	Vehicle 1, initial y'c	Inches
	PSI10	Ψ10	Vehicle I, initial V	Degrees
•	PSI1D0	Ψ ₁₀	Vehicle 1, initial ψ	Degrees/Sac
•	UIO .	u ₁₀	Vehicle 1, initial U .	. Inches/Sac
•	V10	V ₁₀	Vehicle 1, initial V	Inches/Sec
3	XCP20	. X'c20	Vehicle 2, initial X	Inches
••	YCP20	y c20	C	Inches
	PSI20	Ψ 20	Vehicle 2, initial y c	Degrees
***	PSI2D0	¥ 20	Vehicle 2, initial \dot{V}	Degrees/Sec
	U20	u ₂₀	Vehicle 2, initial U	Inches 19:-
	V20	۷ ₂₀	Vehicle 2, initial V	*

				. 4.1
Card :	Program Variable		Definition	Units
4	A1	a ₁	Vehicle 1, CG to F. Wheel	Inches
	Bl .	b ₁	Vehicle 1, CG to R. Wheel	Inches
•	TR1	Τ,	Vehicle 1, Average Tread	Inches
•	FIZ 1	IZI	Vehicle 1, Yaw Inertia	Lb-Sec ² -In
•	, FMASS1	M_1	Vehicle 1, Total Mass	Lb-Sec ² /In.
•	PSIR 10	ψ_{R1}	Vehicle 1, Rear Axle Angle (Damage)	Degrees
••	XFl	X _{F1}	Vehicle 1, CG to Front (+)	Inches
	XR1	X _{R1}	Vehicle 1, CG to Rear (-)	Inches
	YS1	Ϋ́sı	Vehicle 1, CG to Side (+)	Inches
5	A2	a ₂	Vehicle 2; CG to F. Wheel	Inches
	B2	b ₂	Vehicle 2, CG to R. Wheel	Inches
_	TR2 ·	T_2	Vehicle 2, Average Tread	Inches
	FIZ2	I.Z2	Vehicle 2, Yaw Inertia	Lb-Sec ² /In
	FMASS2	M2	Vehicle 2, Total Mass	· Lb-Sec ² /In
•	PSIR20	ψ_{R2}	Vehicle 2, Rear Axle Angle (Damage)	Degrees
	XF2	X _{F2}	Vehicle 2, CG to Front (+)	Inches
	XR2	X _{R2}	Vehicle 2, CG to Rear (-)	Inches
	YS2	Y sz	Vehicle 2, CG to Side (+)	Inches
ź ,				
6	CSTF1(1)	C 11	Vehicle 1, RF Tire Cornering Stiffness	Pounds/Radian
	CSTF1(2)	C 12	Vehicle 1, LF Tire Cornering Stiffness	Pounds/Radian
•	CSTF1(3)	. C ₁₃	Vehicle 1, RR Tire Cornering , Stiffness	Pounds/Radian
•	CSTF1(4)	C 14	Vehicle 1, LR Tire Cornering Stiffness	Pounds/Radian

Card	Program	Analysis	•	•.
No.	Variable	<u>Variáble</u>	Definition	<u>Units</u>
. 7	CSTF2(1)	C 21	Vehicle 2, RF Tire Cornering Stiffness	Pounds/Radia
	CSTF2(2)	C ₂₂	Vehicle 2, LF Tire Cornering Stiffness	Paunds/Radia
	CSTF2(3)	C ₂₃	Vehicle 2, RR Tire Cornering Stiffness	Pounds/Racia
	CSTF2(4)	C 24	Vehicle 2, LR Tire Cornering Stiffness	Pounds/Radia
	•			• .
8	TBTQ1	-	Initial time for torque inputs, Vehicle 1	Seconds
·	TETQ1		Final time for torque inputs, Vehicle 1	Seconds
•	TINCQ1	- `	Time increment for torque inputs, Vehicle 1	Seconds
	NTBLQ1	-	If \neq 0.0, do not read table	• •

(1) Table of Traction (+) or Braking (-) Force at RF Wheel, Vehicle 1 Card format 7F10.0, use three to two hundred and one values for each wheel. The number of entries for each wheel is computed as TETQ1 - TBTQ1 + 1.

Start the entries for each wheel on a new card. Seven entires per card.

- (2) Table of Traction (+) or Braking (-) Force at LF Wheel, Vehicle 1
- (3) Table of Traction (+) or Braking (-) Force at RR Wheel, Vehicle 1
- (4) Table of Traction (+) or Braking (-) Force at LR Wheel, Vehicle 1

See comments following card 8

Card No.	Program Variable	Analysis Variable	Description	Units
9	TBTQ2	Sab	Initial time for torque inputs, Vehicle 2	Seconds
	ŢETQZ	40	Final time for torque inputs, Vehicle 2	Seconds .
•	TINCQ2	•	Time increment for torque inputs, Vehicle 2	Seconds
	NTBLQ2	-	If # 0.0, do not read table	5

- (1) Table of Traction (+) or Braking (-) Force at RF Wheel, Vehicle 2
- (2) Table of Traction (+) or Braking (-) Force at LF Wheel, Vehicle 2
- (3) Table of Traction (+) or Braking (-) Force at RR Wheel, Vehicle 2
- (4) Table of Traction (+) or Braking (-) Force at LR Wheel, Vehicle 2

	· ·	_			
10	TBPSF1	-	Initial time for steer inputs, Vehicle 1		Seconds
	TEPSF1	•• • ,	Final time for steer inputs, Vehicle 1		Seconds
	TINCP1	•••	Time increments for steer inputs, Vehicle 1		Seconds
-	NTBLP1	•	If # 0.0, do not read table	•	•

- (1) Steer Table (degrees) for RF Wheel, Vehicle 1
- (2) Steer Table (degrees) for LF Wheel, Vehicle 1

 (See comments following card 8)

~ .	_,			•.
Card No.	Program Variable	Analysis Variable	Description	Units
11	TBPSF2	•	Initial time for steer inputs, Vehicle 2	Seconds
	TEPSF2	.	Final time for steer inputs, Vehicle 2	Seconds
	TINCP2	=	Time increments for steer inputs, Vehicle 2	Seconds
	NTBLP2	-	If \(\psi \) 0.0, do not read table	m - 1
٠	(1) Steer	Table (degr	ees) for RF Wheel, Vehicle 2	
	(2) Steer	Table (degr	ees) for LF Wheel, Vehicle 2	
	(Se	ee comment	s following card 8)	
12	XBP(1)	Y ' 1		Inches
	YBP(1)	^ , ^{B1} }		Inches
1	XBP(2)	(B1 (Points defining boundary	Inches
		X'_{B2}	between terrain zones	
	YBP(2)	Y'B2		Inches
	XMU1	μ_1	Tire-Terrain Friction Coef- ficient at Zero Speed (Zone 1)	thr
	XMU2	μ_2	Tire-Terrain Friction Coef- ficient at Zero Speed (Zone 2)	••
	CMU	Сµ	Coefficient of linear decrement of friction with tire speed	•
13	DELPS0	ΔΨ	Interval between radial vectors	Degrees
* •	DELRO0	مُم	Increment of change in radius vector	Inches
	ALAMB	λ	Acceptable error in equilibrium	Lb/Inch
P	ZEŢAV	ん ち _v	Minimum relative velocity for friction	Inches/Sec
	AKV(1)	$\mathcal{K}_{\mathbf{v}_1}$	Load-deflection characteristic, Vehicle 1	Lb/In ²
	AKV(2)	K _{v2}	Load-deflection characteristic, Vehicle 2	Lb/In ²
	AMU'	μ	Intervehicle friction coefficient	

Card No.	Program Variable	Analysis Variable	" Description	Units
14	C0	Col	Coefficients of assumed parabolic	en.
•	Cl	c	Coefficients of assumed parabolic variation of coefficient of restitution	-
	C2	C2	with deflection	-

SECTION V

OUTPUT FORMAT

A. Discussion

The output of the SMAC program is largely self-explanatory, but to prevent any initial confusion it will be briefly discussed here. The output consists of printout and an optional graphic display.

The printout first gives a line-for-line transcription of the input record. This is followed by a table of input data in which the variable name and units, as well as the input value, are printed; thus when the user wants to find a particular variable it is not necessary to identify the specific input field. Directly under this table, control inputs (from torque and steering tables) are listed.

Next comes the main body of the printout. The first page, marked page 1 in the upper right hand corner, gives the following data for vehicle 1 in labeled columns:* Coordinate position of the center of mass, the heading angle, for forward and lateral velocities, the angular velocity, the acceleration in the forward and lateral directions, and the absolute magnitude of the total acceleration.

^{*} As always with the SMAC program, coordinates are in a Cartesian system with the positive x-axis at "North", positive y-axis at "East", and angles measured clockwise from the positive x-axis. For angular velocity, clockwise is positive, and for vector velocity forward and right are positive, backward and left negative. It should be noted that, although input are in inches, output are in feet.

Page 2 gives the velocity vector direction and tire tracks for vehicle 1. The velocity vector is the angle at which the car is moving with respect to its forward direction, measured clockwise from straight forward. Then the coordinate position of each tire is given for each time increment. The asterisk next to the coordinates denotes skidding tires.

Page 3 and 4 repeat this information for vehicle 2. The page after page 4, numbered page 1, begins again with vechicle 1 at the next time increment following vehicle 1's previous page 1. This 4-page pattern of vehicle 1's moving coordinate position and tire tracking (same for vehicle 2) repeats till the run ends.

At any time when the time increment changes, there is an announcement on the page prior to the first page including the new increment. The announcement includes values of the old and new increments, and the time of switchover. (For explanation of the roles of the respective Δt 's, see items 1:3-5 in the preceding section.)

At the end of this main table, there are miscellaneous subroutine messages and then a damage summary. The first part
of the summary is a table of displaced points--any point
moved by crush forces is given in two forms, polar and
cartesian. Specifically, for each vehicle ther is a table

of 4 columns. The first two give radius in inches and angle in degrees (measured clockwise from front center) of each displaced point with respect to the center of gravity of the vehicle. The other two columns give x and y coordinates of the displaced points in the vehicle-fixed coordinate system (origin at center of gravity, positive x-axis through front center, positive y-axis to right).

Below the table of displaced points for each vehicle is a concise discription of the damage, given in the following form for each vehicle: the beginning and end points of the damage area in polar coordinates, the angular coordinate of the midpoint of damage, the vehicle damage index (VDI), and ΔV . ΔV is the total change in velocity (the time integral of the absolute value of the acceleration) over the period where acceleration exceeds 1 g. given in mph.

In addition to the printout, the SMAC program can create a graphic display of the simulated accident showing the position at impact, final position, damage, and tire tracks. The display consists of a heading, which includes the first two cards of input, the plot of collision, and a table of data. The plot includes labeled X' and Y' axes with a scale given at the bottom. The position of each car at impact is shown with dotted lines, and the final position with solid lines. Where damage has occurred, the solid line shows the damaged outline, with the original outline

vehicle 1 and vehicle 2, and heading 1s given by a triangle inside each car outline, pointing in the forward direction. A small circle indicates the center of gravity. Tire tracks are also shown—solid lines where the tire is skidding, dotted lines where it is rolling.

The table appearing beneath the plot gives the following information for vehicles #1 and #2: coordinate position of the center of gravity, heading angle, forward and lateral velocity in mph and angular velocity at impact, coordinate position of center of gravity, heading angle and remarks on presence or absence of motion at end of run, and figures for vehicle damage index and ΔV (See Section V(C), page 36 for graphic display).

0.(ZERO.FINAL DAWAGE TABLE TAPE (NON-ZERO.DAWAGE HISTORY TAPE (ALSO WPITTEN ON FOOTRAN 2. (TAPE IS ALMAYS FORTRAN 1)

CEBER BEDERE ALL TRING BOOK LIBERT C. LUI

ì

NO.OF VEHICLES = 2.

١

" s'ena bintita ant that the Administration is

Sample Computer Printout (This output resulted from the input data shown in IIIB)

SIMULATION NODEL OF AUTOMOBILE COLLISIONS (SMAC)

CAL-CASE-40-10U

1

≃:

VEHICLE NO. 1 VEHICLE NO. 2 VEHICLE NO. 3 VEHICL			INITIAL CONDITIONS	CNO				0				
0.0 INCHES VC20 = 10.00 INCHES OELP91 = 2.000 DEGREES VC20 = 0.0 INCHES VC20 INCHES	VEHI			₩ 2							χ.	
0 = 0.0 DEGREES			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	* C C X	4 200			100			, ·	
0.0 0.0	:			0000				OFF DHO	ĺ			
10	، ر د د د	0000		0000					-			
10 10 10 10 10 10 10 10	0 1 1 2	D .	DEGREES	PS120				K AMOUA	_			
10 molecus of the control of the con	51100	ن د پ		121 COU			•	A 4 1 2 7	1			
0.0 INVSEC	5			UZC								
DEFENSIONS AND INERTIAL PROPERTIES DEFENSIONS AND INERTIAL PROPERTIES DEFENSIONS AND INERTIAL PROPERTIES DEFENSIONS NUCKES DEFENSIONS	9	0.0	INSEC	V 20	0	INVSEC						
10 10 10 10 10 10 10 10	Ť					*!	•	1		Ç L	***************************************	
# 52.700 INCHES # 54.700 INCHES # 19752 INCHES # 19752 INCHES # 19752 INCHES # 10.0500 INCHES # 10.050 INCHES # 10.0500 INCHES # 1		ž O	ENSIONS AND INERTIAL	PROPERTIE			-	Z 20 10,		,	•	
# 54.400 INCHES		# 52°70	O INCHES .	8 2	H 60+500		ŧ	K V1	10		- C++7	
## 57.700 INCHES ### 7.500 LINCHES ### 7.500 LIN	-	# 54.AO		n2	000*69 #			K V2	. 50		V**2)	
## 19753. L0-SEC##21N 12 ## 38033. L0-SEC##21N C0 ## 0.35417E-02 VERSUS ### 7.500 L0-SEC##21N M2 ## 0.060 L0-SEC##21N C1 ## 0.35417E-02 VERSUS ### 7.500 L0-SEC##21N M2 ## 0.060 L0-SEC##21N C1 ## 0.35417E-02 VERSUS ### 7.500 L0-SEC##21N C0	1.	= 57,70(182	E 63,100			MU. FRICI	Ħ	. 550		
10.000 LOTGES XF2 = 10.600 LH-SEC.*2/IN C C		# 19763.		1.2	# 38033.		Z	00	0		TUTION	•
10		7,500		₹	10.600		Z	¥	35417		Sus	7
# 5.700 INCHES # 100.500 INCHES # 15.700 INCHES # 15.700 INCHES # 15.700 INCHES # 15.700 INCHES # 100.000 IN	1810	0,0		PS1820	0	DEGREES		#	3.473911		CTION	
# 10270 INCHES # 75,700 INCHES # 75,700 INCHES # 10250, LB/AAD CORNERING STIFFNESS # 10250, LB/AAD C(6) # -10250, LB/AAD C(7) # -10195, ** C(7) # -10195, ** C(7) # -10195, ** C(8) # -10195, ** C(1) # -10195, ** C(2) # -10195, ** C(1) # -10195, ** C(2) # -10195, ** C(2) # -10195, ** C(1) # -10195, ** C(2) # -10195, ** C(3) # -10195, ** C(4) # -10195, ** C(1) # -10195, ** C(1) # -10195, ** C(2) # -10195, ** C(1) # -10195, ** C(2) # -10195, ** C(1) # -10195, ** C(2) # -10195, **	-	# 85.70(= 100.500							
# 75.700 INCHES CORNERING STIFFNESS CORNERING STIFFNESS # -10250, LD/RAD C(5)	-	00.001-=		XR2	ı		;					7
TIRE PROPERTIES CORNERING STIFFNESS TIRE—TEFRAIN COEF AND TERRAIN C(5) = -10250. LB/AAD XRI' = 0.0 IN. Y91" = 0.0 IN. Y91" = 0.0 IN. Y91" = 0.0 IN. Y92" = 0.0 IN. Y93"	=	# 35.70(, Y S.2	39,650							
CORNERING STIFFNESS # -10250, LB/RAD # -10250, LB/RAD	,			-		. 5311	1					
## -10250, LD/RAD ## -10250, LD/RAD ## -10250, LD/RAD ## -10250, LD/RAD ## -10105, ##	;							TIRE-I	TECHAIN	COEF AND	TERRAIN ZONE	
# -10750 # -10175 C(7)	2	# -10250.	L.B/RAD	C(5)			L		0.0	~	# .16	
# -10105 # -10105 C(A)	Ξ.	* -10250.		C (6)		:	1	Ħ	000-000			
PSIGN PANGE TESTS PSIGN FOR HADBI TESTS CALLISTON CRITERIA TO # 0.30000E-03 PRIGRAM CONTPOL DATA COLLISION CRITERIA TO # 0.00 SEC., BEGIN TO # 0.00 SEC.,	3		: .	C(7)		•	i	XMU1 m	0.700			
In Pance In Particular In Indian Indian In Indian Indian Indian Indian Indian Indian Indi	÷	# -10195.	:	C(#)				XMU2 =	004.3			
I B PANGE TFSTS			:	•		•	<i>i</i>		0.3000	7E-03		
LLISION CRITEPIA COLLISION CRITERIA TO 000 SEC., REGIN TO 000 SEC., REGIN TO 000 DEGREES TO TO TO 000 SEC., REGIN TO 000 DEGREES TO DICOLL TO 0.050 *** INTEG. DICOLL TO 0.010 *** INTEG.	HSd .	B PANGE TE	FSTS	PSIBL		TESTS		PROGRAM	1 CONTP	3L DATA		-
# 70.000 DEGREES . PSILIMS # 10.000 DEGREES 10 # 0.00 SEC., REGIN # 110.000 PEGREES 170.000 * END	כטרו	LISION CP)	ITEPIA	COLLE		Į,						
# 110,000 ** PSILIMG # 170,000 ** FF # 2,000 ** FND # 250,000 ** FND # 250,000 ** FND # 250,000 ** FND FD	1 1 1 1 1	70.00	O DEGREES		= 10.000			To	0		REGIN	
# 250.000 ** # 290.000 ** # 290.000 ** # 290.000 ** # 290.000 ** # 290.000 ** # 290.000 ** # 290.000 ** # 290.000 ** # 290.000 ** # 290.000 ** # 290.000 ** # 290.000 ** # 290.000 ** # 290.000 ** # 290.000 ** # 290.000 ** # 20.000 ** # 20.000 ** # 20.000 **	511.142			PSILIM6	# 170.000	:		16	2		ON:	
# 290.000 ** DTCOLL # 0.001 ** DTCOLT # 0.010 ** DTPRNT # 0.005 ** UV41N # 1.000 IN/SE PSIDOT # 2.000EG/SE	511.143	B 250.000		PSILINT	= 190.000	•		DITTRAJ	ľ	:		TRAJ
DTCOLT # 0.010 ** DTPRNT # 0.005 ** UV41N # 1.000 IN/SE PSIDOT # 2.000DEG/SE	511184	* 290.00%	••	PSILIMB	m 350.030	•		DICOLL	ě	:	INTEG.INTVL.C	ישרו
# 0,005 ** PP # 1,000 IN/SEC # 2,000EG/SEC								DICOLT	ė #	•	INTEG. INTVC	504
# 1.330 IN/SEC # 2.000EG/SEC								DIPART	o H	:	PPINT INTERVA	
- # 2.000EG/SEC STOPPING			•					N 1 5 > 3	# #	135/NI 000'		ST
					•			PSIDOT	# 2.	POODEGZSE	STOPPING	ST

101										
The control of the	•		,		9		SNOI			PAGE 1
THE TOTAL MACHINES WINDER WIND		***		SIMULATIO	0-740.	SE-40-10		;	:	
1.					N. I.J. HICLE	4 0	2	ACCELE	ATIO	,
		9.0	No.	ADING A	VFLOCE WD	TIES LA	PSII	×	4	
1	₹ (: t		DEG	S	TISE	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(3		؟ ق
10 10 10 10 10 10 10 10	, . o	0	79.0	0.0	4 6	0.0		•	0	•C
10 10 10 10 10 10 10 10	010	Ç, r	, v . c	0	-	00.0-	Ç	Ň	0.0	٠.
1	<u>ج</u> د	0.32	0.67	Ö	C	00.0	0.0	e i	- 0	- 7
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		0.34	0.67	00.0-	0	0	•		0.0	•
1	C.	0.37	0.67	00.0-	¢ •	c c	* N	N	0.0	5
Color	Ċ	. , <	7.67	00.00	• •	0	0 . 2	C)	0.0	~
1.	7 0	44.0	0.67	00.0-	•	0	0 1	N F	0 0	, 0
1.00	C	0.47	0.67	00.0	Υ <	0 0	9 M			
1	٠.	00.0	0.67	00.01	* M	ر د د	4 • 0	m	0	4
1.00	۲	0.55	290	00.0-	N	0	₩,	ក ។ ស	0 0	•
Color	•	,	19.0	00.0-		ė,				. a
Control Cont	٠	0.0	79.0	000	0 0		-0-74		0.0	٥.
Control Cont	5	0.62	70.0	-0.01		ċ	€	0.4	ů,	ó.
10	ָי פ	6.67	0.67		9	0	6.0	4 4	0 0	• •
1		0.70	0.67			0 0	9 0			•
1.0	•	۲.	19.0	•		5 0		± 4	0	LD.
1.75 1.75	•	••	0.67			ءَ ڊ	*	A. A	0.0	æ e
1.	•		19.0	-0.01	-	Ç		ç.	C (? :
1.00		0.82	. 0.67	-0.01	-	o, c			9	-
11 11 11 11 11 11 11 1	•	0.44	0.67	-0.01	~ ~	0	*	4	0	€.
10	6480.	6 0 C	0.0	-0.02	-	0	*	ត្រូវ ព្រំព្	90.0	r. d
1.01	.0349	0.01	0.67	20.0	M	0,1	~	e e	-0.26	Š
0.030 0.057 0.067 0.070 0.087	0410.	0.93	0.67	-0.02		9 9	* 5	20.5	0.0	o,
0.010	3860*1	90.0	0.67	20.02	. 41	•		6.0	0.1	٠.
0.01	0.0.30		0.67	-0.02	~	0.01		•	9	÷ ^
0.420 1.05 0.03 21.75 0.01 -1.75 0.03 -1.75 0.03 -1.75 0.03 -1.75 0.03 -1.75 0.03 -1.75 0.03 -1.75 0.03 0.03 0.03 -1.75 0.03	0.0410	1.02	0.67	-0.03	N	0.0	9.0	9 1	• 6	, P)
04.17 1.07 0.03 21.55 0.03 21.55 0.03 21.55 0.03 21.55 0.01 0.04 0.04 0.04 0.05 0.05 0.07 0.07 0.07 0.07 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.02 0.03 7.1 0.040 119 0.04 20.04 0.04 0.04 0.02 0.02 0.03 0.16 0.02 0.03 0.16 0.02 <	0.0420	1.05	0.67	-0.03	-	10.0	> 0	4.0	4	4
0.64 -0.03 21.34 0.04 -0.03 21.34 0.05 -0.01 6.6 0.67 -0.03 20.91 0.06 -1.61 -6.92 0.04 0.45 -0.04 20.91 0.06 -1.65 -6.92 0.04 0.47 -0.04 20.47 0.06 -1.65 -6.92 0.04 0.40 -0.04 20.47 0.06 -1.64 -7.13 0.03 7.1 0.40 -0.04 20.47 0.06 -1.64 -7.24 -0.21 7.2 0.40 -0.04 20.04 -1.64 -7.49 0.16 7.4 0.67 -0.04 20.01 0.09 -1.54 0.22 7.5 0.67 -0.04 19.76 0.09 -1.49 0.26 7.5 0.67 -0.05 19.30 0.10 -1.27 7.75 0.22 7.7 0.67 -0.05 19.30 0.10 -1.27 7.79 -0.09 7.79 0.67 -0.05 19.30 0.10 -1.27 -7.94 -0.09 7.79 0.67 -0.05 19.30 0.10 -1.27 -1.29 -7.79 -0.09 0.67<	0.0432	1.07	0.67	7 6 6	-			6.3	P,	٠
0.67	0.0440	0) c		• -	₩0.0		9.9	٠.	•
1.5	2.0450		0.67	-0.03	_	50.0	9 - 1	6.7	o d	· ·
0.67	0.0400) (F)	79.0	40.0-	0	90.0		• •	• •	
0.047	0.0440	1.17	0.67	-0.04	9	o c	•		9	•
.0.00 .0.01 .0.04 .0.04 .0.04 .0.04 .0.05 .0	•	1.19			4 (ç	19:11	7.2	C .	•
.0516 1.25 0.67 -0.04 19.76 0.09 -1.47 -7.56 0.26 7.5 .057 -0.05 19.36 0.10 -1.25 0.67 7.7 .057 -0.05 19.30 0.10 -1.25 7.7 .057 -0.05 19.05 0.11 -1.27 -7.96 -0.07 7.90	(50.	1.21	•			0	.5	7.4	~	
.05.0 1.27 0.67 -0.05 19.30 0.10 -1.25 7.75 0.23 7.77 0.65 19.30 0.10 -1.25 7.75 0.05 7.8 0.0	ç		9 9		7.6	¢.	*	ا م و ا	N (۰
.0540 1.27 -0.05 10.05 0.11 -1.27 -0.09 7.8 .0540 1.31 0.67 -0.05 19.05 0.11 -1.33 -7.94 -0.07 7.94	. 0	1.27		٥.	ĸ,	ċ.			y ~	• •
1.11 0.67 "0.03 1.00 0.11 1.00 "0.07 7.040.07 7.040.07 7.04			•	0:0	ņ	-		7.8	•	
	0		•	Ċ	2		-	•		

Mail	VELOCITY VECTOR ATANIVIZU 11 DEG X1: ATANIVIZU 11 DEG X1: ATANIVIZU 11 DEG X1: A 14*	FT) X3* X3* TES SKIDOING TIRE) -4.5 -4.3 -4.3 -4.3 -4.3 -4.3 -4.3 -4.3 -4.3		
VEHICLE NO. 1 10 CG 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	VETANIVI VI 19 DEG XI PET VI CETORA A **** 3:1*	FT) X3* X3* X3* TES SKIDOING TIRE) -4.5 -4.3 -4.3 -4.3 -4.2 -4.2		
AMANOLITY VECTOR ANALOLITY	ATANIVIZED NECTOR ATANIVIZED 10 DEG XI: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	X X X X X X X X X X X X X X X X X X X	:	: :
0.00	10.00 10.0	CATES SKIDDING TIBED 14	L.P.	•
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	10.00	mm m m m m m m m m m m m m m m m m m m	1	
100 100	150,000	74*	4.6	-1-7
1	150,000	74	4.3	-1.7
100 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10000 100000 100000 100000 100000 100000 100000 100000 10000	# # # # # # # # # # # # # # # # # # #	m r	- I
150,000 1,	150,099 4,04 311 4,04	7		7.1.
100,000 100	150,095 150	3 M M M M M M M M M M M M M M M M M M M	4.2	-1:7
1970, 970 1970,	359,973 359,973 359,974 359,97		4	-1.7
100,000 100,	13.00.000 1.00.000	F 1-4-1	4	-1.7
100,000 100,	355, 948 355, 948 357, 948 358, 9	7* 3	4	-1.7
100 100	120,044	7* -4+1 3	۸.1	-1.7
150,004	355, 984 355	* ***	•	-1.7
100 100	1559.084	n . O•4** *	0.4	\ • II = 1
150,080	155, 980 15, 00	n 0 4 1 #	0.0	· *
1, 2, 2, 2, 2, 3, 1, 4, 5, 6, 4, 1, 1, 2, 4, 1, 2, 2, 3, 1, 4, 2, 2, 3, 1, 4, 2, 3, 1, 4, 2, 3, 2, 4, 1, 2, 3, 3, 4, 2, 3, 1, 4, 2, 3, 3, 4, 2, 3, 3, 4, 2, 3, 3, 4, 2, 3, 3, 4, 2, 3, 3, 4, 2, 3, 3, 4, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	150, 080 150, 04 3.14 5.04 3.15 5.04 3.15 5.04 3.15 5.04 3.15 5.04 3.15 5.04 3.15 5.04 3.15 5.04 3.15 5.04 3.15 5.04 3.15 5.04 3.15 5.04 3.15 5.04 3.15 5.04 3.15 5.05 5.15	0.4-	0.4	11.4
100 100	135, 283 135	# + + + + + + + + + + + + + + + + + + +	00.	11.7
1	1859.981) M	6.0	-1.7
150,000 150,	359.078 359.085 359.08	M 0.00	3.9	-1.7
150,090 150,	359,989 359,98	E 6*E# #	6.5	-1.7
100,000	359.994 359.994 359.994 359.994 359.983 360.001 0.0010 0.0	-3.8	3.8	-1.7
959.040 95.24	959.263 959.263 959.263 0.0010 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0	מי מ אין אי	r & #	· · ·
10	950.053 0.001 0.0010 0.023 0.033 0.033 0.034 0.0	n	ຸ ແ ກີ ຄ	-1.7
0.070 0.024 0.025 0.	0.001 0.029 0.033 0.034 0.035 0.037 0.	F. F.	'n	-1.7
0.020 0.023 0.034 0.034	0.029 0.029 0.033 0.033 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.035 0.035 0.035 0.036 0.037 0.037 0.037 0.037 0.037		m	-1.7
	0.029 0.033 0.034 0.034 0.035 0.020 <t< td=""><td>W 4.81</td><td>3.7</td><td>-1.7</td></t<>	W 4.81	3.7	-1.7
1	0.013 0.013	3.7	m 3	-1.7
	0.013 0.013 0.013 0.015 0.	3.7 3	Ė	-1.7
0.016 0.015 0.015 0.016 0.016 0.017 0.018	1	3.6	e i	
0.015 0.015	1	3°8	, n	7 - 1 - 1
1	747 748 748 748 748 748 748 748	0.0	, ,	
1	0.070 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.053	D + C	1 17	
0.0570 0.0572 0.	0.0270 0.0320 0.0320 0.0320 0.0320 0.0320 0.0320 0.0320 0.0320 0.0320 0.0318 0.0318 0.0318 0.0318 0.0318 0.0318) EA	m	_
1	0.052 0.152 0.152 0.152 0.152 0.152 0.152 0.152 0.152 0.153 0.153 0.154 0.155 0.155 0.157 0.	3.5	6	-1.7
0.120 0.130 0.130 0.152 0.152 0.152 0.152 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.253 0.253 0.253 0.253 0.253 0.253 0.254	0.120 0.130 0.152 0.152 0.152 0.152 0.250 0.250 0.250 0.270 0.270 0.270 0.377 0.318	3.5	7	-1.7
0.130 0.130 0.130 0.130 0.130 0.152 0.165 0.165 0.167	5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	3.5	m	
1.	1	3.4	m	-1.7
5.6 3.1 5.6 1.7 1.3 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	5.6 3.1 5.6 1.1 5.6 1.1 5.6 1.1 5.6 1.1 5.6 1.1 5.6 1.1 5.6 1.1 5.6 1.1 5.6 1.1 5.6 1.1 5.6 1.1 5.6 1.1 5.6 1.1 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7	3.4	m) i	• í
5.6 3.1 5.6 -1.7 -3.4 3.1 -3.1 5.6 -1.7 -3.4 3.1 -3.1 5.6 -1.7 -3.3 3.1 -3.1 5.6 -1.7 -3.3 3.1 -3.1 5.6 5.6 -1.7 -3.3 3.1 -3.1 5.6 5.7 -1.7 -3.3 3.1 -3.1 5.7 -1.7 -3.3 3.1 -3.1 5.7 -1.7 -3.3 3.1 -3.1 5.7 -1.7 -3.3 3.1 -3.1 5.7 -1.7 -3.3 3.1 -3.1 5.7 -1.7 -3.3 3.1 -3.1 -3.3 5.7 -1.7 -3.3 3.1 -3.1 -3.3 5.7 -1.7 -3.3 5.7 -1.7 -3.3 3.1 -3.1 -3.3 5.7 -1.7 -3.3 5.7 -1.7 -3.3 5.7 -1.7 -3.3 5.7 -1.7 -3.3 5.7 -1.7 -3.3 5.7 -1.7 -3.3 5.7 -1.7 -3.3 5.7 -1.7 -3.3 5.7 -1.7 -3.3 5.7 -1.7 -3.3 5.7 -1.7 -3.3 5.7 -1.7 -3.3 5.7 -1.7 -3.3 5.7 -1.7 -3.3 5.7 -1.7 -3.3 5.7 -1.7 -3.3 5.	5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6	3.4		_
5.6 -1.7 -3.4 3.1 -3.3 3.1 -3.	0.220 0.220 0.220 0.270 0.270 0.270 0.270 0.31 0.270 0.37 0.37 0.37	3.4	en i	-1.7
0.220 0.220 0.240 0.270 0.270 0.270 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31	0.220 0.240 0.270 0.270 0.277 0.37 0.37 0.37 0.37		4	11.7
00.57 0.270 5.7 3.1 5.7 -1.7 -3.3 3.1 5.7 -1.7 -3.3 3.1 5.7 -1.7 -3.3 3.1 5.7 -1.7 -3.3 3.1 5.7 -1.7 -3.3 3.1 5.7 -1.7 -3.3 3.1 5.7 -1.7 -3.3 5.7 -3.3 5.7 -3.	0042 0.270 5.7 0.270 5.7 0.377 5.7 0.318 5.7	។ ។ ។ ។		- 1 - 4
0.2707 0.207 0.307 0.318 0.318 0.318 0.318	. CAA	D + C		-1.7
0.318 0.318 5.7 1. 5.7 1. 5.7 1. 3.1	0.318 5.7 3.1	1 P)	M M T	-1.7
2 T T T T T T T T T T T T T T T T T T T	2 × × × × × × × × × × × × × × × × × × ×		E + 10 1	-1.7
A TO		1.5	77° M	-1.7

...

, c :

- -

. 1

			1		**************************************				
	-		-	7 tu	NO. 2			•	
	9,0		HEADING ANGLE	VELOCI		~	ACCELER	- «	
17 +	XC2.	5 •	P512	Q 1	L A T	PS12001	Z Y	٠ د د	
SEC	ş	рш , Въ. ,	OF G	v)	77.57.0		-0.63	0.0	0
9	13,56	ę ·	1 50.00	, ,	• :		, ma	•	-
.00	Ø 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			. <	00.0-	Č	-1.65	-0.02	-
0.0110		•		2.62		ċ	-1.75	÷	;
0.010.0	15.55	00.0	. 0	2.57	ò	-		0	
0,0163	15.54	0	180.00	2.51	ç	~	-1.03	0.0	
2 10	54	0.0	180.00	2.44		0.2	N (00.01	
5	15.54	0	0	e •	0.0			90.01	
•	15.54	o	180.00		0	۳ ،		•	•
	15.54	o.	180.00	2,23	ָ ֓֞֝֝֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֡֓֡֓֓֡֓֡֓֡֓֓֓֡֓֡֓֡֓֡֓֡	90.01	10.01 70.01		. ~
0.0193	15.53	o	180.00	2 1 2	•	* <			. ~
	15.53	0	140.00	2.07	•	; v	, ,	91.0-	
0.0210	15.53	•	180.00	20.1	20.0		. 6	-	:
0.0220	'n	0	180.00	÷ .	70.01	יי יי	. 6		•
	38.82	÷ (140.00	200	3 C	9	0	Ö	
•	15.52	•		1 4 1) C	¢	**	00.0	
	20.52	0	\$5.50 \$1.50				-	~	
	20.01	•	F4 • F = 1	70.	0	-0.74	~	-0.14	
0.0270	20.01	00.0			0	-0.74	N	40°0-	
0000 C	46.54	, c	179.90	1.20	0	08*0-	-3.46	-0.11	
2000		00.0	ċ	1.09	+0.0-	04.0-	5		
915.3	15.51	0	179.09	76.0	40.0-	¢,	-3.82		
, <		Ç	¢	٠	+ J • U-	66.01	Ç,	-0.03	
•	15.51	٥.	170.99	0.72	*0.0-	-0.78	20°0	-0.12	i
•	10.01	0	179.99	V.	-0.04	-	0		
9		•	179.99	0.46	-0.04	٠.	~	0	•
0-0340	10.5	00.0	179.99	0.33	Ċ	÷	٠,	0.0	
0.000	18.51	o,	179.99	•	O		4.23	~ (
	15.51	•	ċ	Ç	e.	0	Ď.	•	
•	18.81	۰	179.98	90.0-	•	å i	•		ı
6.5.0	13.51	0	ċ	Ξ.	õ,	ព្	* 4		
	15.51	Ö	•	Ň		# M	ų	•	
	15-51	00.0	•	71.0	****	٠.) K	. "	
	2.5	*				*		0.22	
	## (F	9	170.90	70. C		M	3.7	50.0	
•	15.51	00.0		- e		m	^	٥.	ļ.
		•		•	0	60.01	£6*£	E0.0-	
٠				-1.10	-0.01	E4.01	-3.76	ò	
66.40	25.	0	ò	Ŋ	10.0-	4	°	0	
27 40 40	15.52	0.00	ċ	-1.35	-0.01	4	4	. 2	
	15.52	C	170.98	-1.48	•	₩.	4	o.	;
2000	¥	0	179.98	1.5	0.0	0.5	•	~	
0	15,52	o,	ċ		°	0 . 5	•		
0.0540	15.52	٥	•	ō	0	e d			:
0.0.0	15.53	٠	179.98	2.0	c.	ကျောင် ငိ	• •		
04.2.2	۴	0	ċ	٠	00.0	> 0	0 - 4	* C · C	
44.44	60 V	00.0	179.00	F	G::-				
,	•						10 7 - 41	10.	

00.00

27.22

(nmac)			
SEMINATION MOOFE OF AUTHMINIER COLLIBIONS (SMAC)	UAL_(A1.F-M1+ 10.0)	4201.U. 1840	

80.08 80.08

0 ¢

12.64

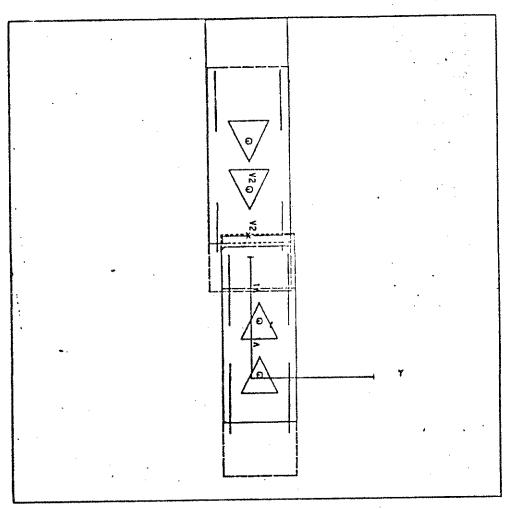
10.5

179.699

0.00 0.00 6 P.00 6 P.00

Y1. X2. (1.5) (2.6) (1.5) (2.6) (1.5) (2.6)			1 1211	TRACKSTOR	0		۳.	•
XXX XX	E C		u.	•	¥ 7 • 7	r:	* 4 X	***
10.55	X1.			# ± €	< ×		i	
10.58	1	**	1		∾	N	ċ	
10.5* 2.6* 20.8		1 40 00 00 00 00 00 00 00 00 00 00 00 00			ċ	'n	20.8	٠
10.55	#U-04	#5.6#			20.8		C + C	
10.55	10.50	-2.6*			20°9			•
10.55	10.5*	-2.6*		•	20.8		•	
10.55	10.54	-2.6*	10.54		20.8	,	• c	
10.55	10.5*	-2.64	*		20.8	u e	0.00	
5. 10.5% 2.6% 20.8	10.54	-2.6#	•		20. H	v) ¢	
5. 10.55	10.5*	-2.5*		, v	n 4		Ó	
5.4 10.58 2.68 20.8 20.8 10.58 2.68 10.58 20.8 2.68 10.58 20.8 2.68 10.58 20.8 2.68 10.58 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.	10.5*	-2.6*	•		6 . 0 .		0	3.6
2.6	10.5*	-2.6*	•		. e		۰	2.6
10.54	10.54	12.0*	•				0	
10.54	10.5*	-5.6*		****	, c		C	
2	10.5*	-2.6#	•			١ ٨	20.8	2.6
2	10.5*	-5.6+	•				ڻ	\$°
5.5 10.55 2.55 20.48 2.55 20.48 2.55 20.48 2.55 20.48 2.55 20.58<	10.5*	-2.64	٠			, ,	C	2.6
10.58	10.5*	-2.6*	•	٠				2.6
0.54 2.54	10.54	-5.6	٠	•	20.02	, ,	, c	2.6
10.54 10.55 2.64 20.88 2.64 10.55 2.64 20.88 2.64 10.55 2.64 20.88 2.64 10.55 2.64 20.88 2.64 10.55 2.64 20.88 2.64 20.88 2.64 20.88 2.64 20.88 2.64 20.88 2.64 20.88 2.64 20.88 2.64 20.88 2.64 20.88 2.64 20.88 2.64 20.88 2.64 20.88 2.64 20.88 2.64 20.88 20.8	10,54	9 - 2 -	10.5#	•	8.02	4 (2.0
5. 10.55	10.54	-2.6*	10.5*	•	20.8			, Q
10.5* 2.6* 20.6* 10.5* 2.6* 20.6* 20.6* 10.5* 2.6* 20.6* 20.6* 10.5* 2.6* 20.6* 20.6* 10.5* 20.6* 20.6* 20.6* 10.5* 20.6	10.5*	-2.6*	•	٠	20.8	, ,	. e.	5 2
10.55	10.54	-5.6*	٠	•			50.0	
5.4 2.64 20.08 -2.6 20.08 10.55 2.64 20.08 -2.6 20.08 10.55 2.64 20.08 -2.6 20.08 10.55 2.64 20.08 -2.6 20.08 10.55 2.64 20.08 -2.6 20.08 10.56 2.64 20.08 -2.6 20.08 2.64 20.08 -2.6 20.08 20.08 10.56 2.64 20.08 -2.6 20.08 2.64 20.08 -2.6 20.08 20.08 2.64 20.08 -2.6 20.08 20.08 2.64 20.08 -2.6 20.08 20.08 2.64 20.08 -2.6 20.08 20.08 2.64 20.08 -2.6 20.08 20.08 2.64 20.08 -2.6 20.08 20.08 2.64 20.08 -2.6 20.08 20.08 2.64 20.08 -2.6 20.08 20.08 2.64 20.08 -2.6 20.0	10.5*	-2.6#	٠	•	0 (,	8000	
5. 10.5. 2.5. 20.0. 32.5. 5.0. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	10.54	-2.6	•	٠	•	• •	8000	
5.4 10.58 20.68 2	10.54	12.6		٠	•	,	20.8	
50.00 -2.00 10.50 -2.00 10	10.54	-2.6*	•	•	•		20.8	•
56* 10.5* 20.8 20.8 20.8 10.5* 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8	10.5*	12.6	4	٠		2	20.8	
6 4 10.5 4 20.8 -2	10.5*		6.0	•			20.A*	
2.6* 10.5* 1	10.54	15.0	+0.0°	•	c	٠,	20.84	
55	10.5*	\	•		20.6	ę.	20.8	•
56* 10.55* 20.68 20.68 12.5	10.04	v			20.0	Š	20.8	٠
2.6* 10.5* 10.5* 20.6* 10.5* 20.6* 20.6* 10.5* 20.6* 20.6* 10.5* 20.6* 20.6* 10.5* 20.6* 20.6* 10.5* 20.6* 20.6* 10.5* 20.6* 2	10.01	-2.6*	10.5#	2.64	20.8	ò	20.8	•
56 # 10.54	9 6	10.64	40.01	2.64	20.8	ċ	20.8	
56 10.56 20.66 12.06 12.06 12.06 10.56 10.	# G - C - C - C - C - C - C - C - C - C -	-2.6#		2.64	20.8	₩.	•	
54 10.54 2.64 20.66 12.6 20.66 20.66 10.54 10.54	10.5*	-2.6*		5.6#	ċ	N (•	•
54 10.54 2.54 20.8 -2.6 20.8 20.6 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8	10.54	-2.6#		2.6*	ő	N (. (• 7
64 10.54 20.68 12.6 20.68 10.54 20.68 10.5	#0.0	-2.6#	•	2.6*	ô	N	0.07	
5.5 10.5 4 2.5 4 20.8 12.5 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8	# C - C -	-2.6*	٠	2.5*	o	N ۱	2000	•
20.54 10.54 10.54 10.55 10		# 0 · C #	•	٠	Ö	N		٠
10.54 10.54 10.56	1001			2.64	c			٠
20.03	10.0	- 4 - 4 - 6 - 1	•	2•6*	c	-2.6		•
2.64 20.08 2	10.5	4	•	* C*	0			
2.04 20.04 20.04 12.00 20.04 12.00 20.04 2	10.5	N .	•	***	0			
	10.54	-2-0#	٠		0			2.0
# C	6 C C C		•		C		C	
# * Oct	0.01			0.0	0		70.0	٥ ٠
	 C	1 2 7			C	4.00		c.

4	
Too	,)
) "	2
١	ONF
	\bigcirc


						_							
					DAMAGE	E SUMMARY (DI	(DISPLACED	D POINTS.	۵ ۳				
		VEHI	VEHICLE NO. 1	-	•		:	•	- ^ -	V-HICLE NO. 2	1		•
			25 POINTS				9	68000	DSTR2		>	Y2	
	[BUHB	PSIRI	<u>×</u>				. •	000000	·	INCHES	INCHE	HES	:
	INCHES	DEG	INCHES	S.	SULUNI		1.,	14675	0.0	93,5195	0.0		
	73,769	0.0	73.7691	g-4 :	ر ا	;		04.40	2.000	93,5232		3,2659	_
	73.829	2.000	73.7747	<u>,</u>	2.5763		, 0	9000000	4.000	93,4395		6.5339	-
	73.091	4.000	73.9011		1001.5			- E-0-F-0	0000	93.4684	ċ	9239	
	74.199	000.9	73.7929	o. 1	7.7559		. 0	1 4 4 4 0	000.8	93.4341	13.	3,1397	
	74.838	A.000	73.7649	on .	0.3073		. 0	4	10.000	93.4375	16.	4755	1
	74.925	10.00	73.7868		3.0100			05.577	12.000	93.4884		9.8716 -	
•	15.269	12.000	73.7508		0000			96.310	14.000	93.4488		₩66	
	76.053	14.000	73.7938		χ.			67.172	16.000	93.4076		'842	
	76.771	16.000	73.7973	-	- F			145.00	338.000	93.2195		6432	
	77.552	18.000	73,7562					*05.00	000.046	93,5062	2 -34.0335	1335	
	74.536	20.000	71.7996		٠.			30.00	000.445	93.5092	2 -30,3831	1831	1
•	79,350	22.000	73.5718	1	~		-	10100	444.000	93.4277		106	
•	70.888	3.4.000	71.4071				14	000.000	346.000	93.4487	7 -23,2994	966	
	85.773	336,000	77,7895	•	32. A533		. •	A P U C	000.045	93.4884	4 -19.8717	1717	i
	70.579	338.000	73.7830	j	-20.8107			270.00	000.055		-16.4757	1757	i I
	78.517	340,000	73,7822		Ω		•	P = 0 = 40	452.000	03.4942		999	
	77.552	342.000	73.7563		F		W	9 0 0 1 0	0000	93.4685			
	75.772	344.000	73.7976	:	:		*	-	000 984	93,4394		-6.5340	
	76.053	346.000	73.7937				. •	000.00	000.000	03.5033		3,2660	
	75.408	348.000	73.7498	1. 40	ċ		-	200.0	200.000			:	
	74.025	340.000	73.7871	71.				:		:			
	404.4	352.000	73.7689	89 -1									
	74.199	354.000	73.7927		-7.7560								
	73.941	356.000	73.8007		-5.1607			:-		1 1		!	
	73.820	358.000	73.774	· •	-2.5764	2						•	
			i i						VEH	VEHICLE NO. 2	. :		1
		VEN	VENICE NO.					1					
		e e	3242	ES COULT	VFH. DAMAGE	- E	ē	BEGIN	END			VEH. DAMAGE	V.
	w	2		14400	X HCZ I	1 1 1	RH082	PS102	RHOB2	PS182	PSIM2	LNDEX	DELTA
Z	;	ļ	10101	: : : :		HOW	INCHES	υ	INCHES	DEG	000		I.
Ž Ć • •	INCHES DEG 70.45 334.00	# 79.35	22.00	356.28	12FDEW2	16.28	+ 100.54	ED.	4 97.17	16.00	355.98	12FDE W1	6°0
A VEHICLE	NO. 1.	ELAPSED T =	2.0000	sec		-	! !	i		 			
		# F 04904	2.0000 SEC		POR							1	
	WENTER NO. C. ELATORS			i i									

C. Sample Graphic Display (Derived from the input data of IIIB)

GRAPHIC DISPLAY OF OUTPUTS OF ACCIDENT RECONSTRUCTION

COLLISION AND TRAJECTORY

.CRSE-HO-10U

AXIS INTERVALS ARE 10. FEET

RECONSTR.	CTED P55	ITIENS R	NO VELSCIT	IES AT	RPACT		10	SPLATEG F	INAL PESI	T 16N3	MENICLE	
	C.S. PS	:ITIGH	HEADING				C.G. P	65 ET ECH	HEAGING		DRNAGE	
	YEL	YCI	PSIL	FWD	LATERAL	RYSULAR	XC1F	TCIF	PSITE	REHARKS	INGICES.	∇_{Λ}
	FT.	FT.	DES.	RFH	RPH .	DEG/SEC	FT.	FT.	σεG.			RPH
ASSIGNE + 1	0.3	0.7	0.0	17.9	0.0	0.0	4.7	0.7	-0.2	IN MOTION AT 2.0 SEC AFTER INITIAL CONTACT	12FDEN2	18.5
AEBIETE + 5	15.8	0.0	180.0	7.9	3.9	0.0	19.5	-0.0	179.6	VEHICLE AT REST	1250EX1	11.3

SECTION VI SUGGESTED VALUES OF PARAMETERS

In the interest of simplicity, the presented preliminary evaluation of the SMAC computer program has made use of "typical" parameters other than weights for the different categories of vehicle size rather than actual parameters for the specific vehicles. Vehicles representative of four different size categories were selected to provide a basis for "typical" parameters. The following vehicles were included in the different categories.

l.	Subcompact
	•
	Volks wagen Beetle
	Toyota 1200
	Datsun 1200
	Vega
·	Pinto
• **	Fiat 850

Maverick Camero Dart Hornet

Chevelle Torino Coronet Matador Skylark

Chevrolet Galaxie Polara Ambassador Monterey LeSabre New Yorker Fleetwood Continental

On the basis of available dimensional and shipping weight information, and with allowances made for both liquid weight and two passenger loading, the following "typical" parameters have been either directly derived or estimated from available measured values for similar vehicles.

TABLE 1

TYPICAL DIMENSIONAL AND INERTIAL
PARAMETERS FOR 1971-72 AUTOMOBILES

•					
•	1	2	3	4	•
Parameter	Subcompact	Compact	Intermediate	Full Size	Units
a ,	44.7	52.7	57.3	60.5	Inches
b .	46.6	54.8	59.7	. 63.0	Inches
T	51.2	57.7	60.0	63.1	Inches
k ²	1963.	2635.	2998.	358 8.	Inches
- M	5.71	8.51	. 9.86	12.42	Lb-Sec ² /in
x _F	74.7	85.7	94.8	100.5	Inches
$\mathbf{x}_{\mathbf{R}}$	-83.5	-100.0	-110.8	-119.6	Inches
Ys	31.1	35.7	38.4	39.6	Inches
	<u> </u>				

For the following vehicle parameters, representative values have been found but no refinement has yet been attempted for the different categories of vehicle size other than the load-deflection characteristic of the peripheral structure, K_V.

REPRESENTATIVE VALUES OF VEHICLE PARAMETERS

Parameter	Value	Units
(CSTF) _{1, 2}	-10250.	Pounds/Radian
(CSTF) _{3, 4}	-10195.	Pounds/Radian
Сµ	3×10^{-4}	Seconds/Inch
κ _V	{Full Size = 50 } Subcompact = 30 }	Pounds/Inch ²
c ₀ .	0.06423	<u>.</u>
C,	3.5417×10^{-3}	•
C ₂	4.7381 X 10 ⁻⁵	-
μ	_ 0.550	•
ΔΨ	2.00	Degrees
Δp	0.20	Inches
λ	15.0	Lb/In
5	5.0	In/Sec

SECTION VII

REFERENCES

- (1) Motor Vehicle Manufacture's Association (MVMA), "Accident Investigator's Manual", MVMA Detroit, Michigan. Useful for some vehicle properties.
- (2) McHenry, R.R, "Development of a Computer Program to Aid the Investigation of Highway Accidents", Calspan Report No. VJ-2979-V-1, December 1971, HS 800 821. Explains theory and organization of program.
- (3) McHenry, R.R., Segal, P.J., Lynch, J.P., Henderson, P.M., "Mathematical Reconstruction of Highway Accidents", Calspan Report No. ZM-5096-V-1, January 1973, HS 800 801. Gives Several case examples.
- (4) McHenry, R.R., "Approximation of Impact Conditions via Computer Simulation", Proceeding International Accident Investigation Workshop, Brussels, Belgium, Pilot Study on Road Safety for the Committee on the Challenges of Modern Society, NATO, June, 1973, National Highway Traffic Safety Administrations, Washington, D.C. 20590. Provides a concise overview of SMAC.
- (5) Jones, I.S., "Results of Selected Applications to Actual Highway Accidents of the SMAC Reconstruction Program" to be presented at Eighteenth Stapp Conference, Ann Arbor, Michigan, November, 1974. Shows how the operator can obtain a best fit to scene data.
- (6) Jones, I.S., "The Application of the SMAC Accident Reconstruction Program to actual Highway Accidents". Proceedings of Eighteenth Conference of the American Association Automotive Medicine, Society of automotive Engineers, Inc., Toronto, Canada, 1974. Illustrates use of the START program to generate initial conditions for the SMAC program.

II. SMAC Job Submitted from a Remote Terminal

```
The following JCL may be used to execute the SMAC system
from a remote batch terminal. The SMAC system executes
in two steps. The first step accepts user input and
produces output as described in the SMAC Operator's Manual.
The second step produces an IPF which may be displayed or
postprocessed by the user on the plotter of his choice.
    Job cards - see MCAUTO OS Programmer's Guide for format
//* DAC II routing cards and format cards
// EXEC PGM=SMACIPF, REGION=180K
//STEPLIB DD DSN=DLS.GP12.DØT.SMAC,DISP=SHR
//FT01F001 DD DSN=&TEMP,UNIT=SYSDA,DISP=(,PASS),
    DCB=(RECFM=VBS, LRECL=364, BLKSIZE=1832), SPACE=(1832, (100, 10)
//FT02F001 DD DUMMY
//FT06F001 DD SYSØUT=A
//FT05F001 DD *
    SMAC input data
                                                    (2)
// EXEC PGM=SMACPLØT, REGION=140K
//STEPLIB DD DSN=DLS.GP12.DØT.SMAC,DISP=SHR
//FT01F001 DD DSN=&TEMP,UNIT=SYSDA,DISP=(ØLD,PASS)
//FT06F001 DD SYSØUT=A
//FT15F001 DD SYSØUT=A, DCB=(RECFM=FB, BLKSIZE=80)
                                                    (3)
//FT05F001 DD *
                                                    (4)
/*
```

Notes:

- (1) DAC II routing cards and format cards needed only if file is to be displayed using FASTDRAW. (See following page for explanation of this situation.)
- (2) JCL from this point produces the IPF which will be displayed or postprocessed.
- (3) This DD statement will be used if the IPF is to be displayed using FASTDRAW.

If the IPF will be used as input to a MCAUTO postprocessor for the CalComp drum, CalComp flatbed, or Gould electrostatic plotter, define FT15F001 as follows:

```
//FT15F001 DD DSN=&IPF,UNIT=SYSDA,DISP=(,PASS),
// SPACE=(TRK,(5,1)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
```

(See MCAUTO IPF User's Manual for descriptions of various postprocessors available.)

If the IPF will be postprocessed at a user site to produce a plot, FT15F001 must be a punch file (SYSOUT=B).

(4) No data will be input by the user. Extra printout helpful in debugging program errors may be generated when this record is input. 1) The DAC II routing cards have the following format:

```
//*POSTP,UN=uuuuu,PW=ppppppppppppp,PP=TOP.
//*TOP OUT=(SYSMSG=aaaaaaaa,FT15F001=bbbbbbb)
```

The variables in these lines are defined as:

uuuuu - Valid CYBER user number

bbbbbbb - Name of file where the plot information will be stored (7 characters maximum)

2) The format cards should be constructed as follows:

```
//*FORMAT PR,DDNAME=FT15F001,DEST=CDC1B,CONTROL=SINGLE
//*FORMAT PR,DDNAME=SYSMSG,DEST=CDC1B
//*FORMAT PR,DDNAME=SYSMSG,DEST=user terminal id
```

These format cards are necessary when routing output to the DAC II system.

III. Execution of SMAC Pre-Processor

The user of this system can execute the START program and/or generate the file for display by creating a job stream to execute SMAC on the IBM 370 system.

A. Log On Procedure

To connect the terminal to the DAC-II system, the user dials the phone number of a line of the appropriate speed (10 or 30 cps), listens for a beep, and types the return key once. The system responds:

MCAUTO - 11:39 DEC 14, '77 LOGON PLEASE: PASSWORD

The user enters the account number and password. The form is:

LOGON PLEASE: ACCOUNT NUMBER PASSWORD

NHINNANN (user password is entered on overtype for security.)

B. Initialization of SMAC System

#-SMACCOM.C0162

This line must be typed by the user. (# is a prompt and is not typed by the user.) This will load the system and give SMAC program control. The user will now be prompted with:

******* SMAC PRE-PROCESSOR ********
SELECT PROGRAM TO BE EXECUTED (START, SMAC)

The prompt character will be a ?.

The user will respond with either START or SMAC.

If SMAC is selected, the user will be issued a series of prompts which will enable him to prepare a SMAC input stream for batch processing on the IBM 370 (see Section III.D).

If START is selected, the user will be issued a series of prompts which will allow him to input basic accident data. The START program will then generate output consisting of:

Collision Conditions
Separation Conditions
Dimensions and Inertial Properties
SMAC input file.

The SMAC input file may be submitted for batch processing by the SMAC program on the IBM 370 if so desired. Multiple START cases are allowed, but only the last case may be submitted for SMAC processing.

C. START program

The user will be issued a series of prompts requesting that he input his accident data. All numerical data may be input with a free format. Data items must be separated by at least one comma or blank. A message

ERROR IN INPUT - RETYPE THIS LINE

will be printed whenever the system detects illegal characters in the numerical data. The user will then have to re-enter the line of data which contained the illegal data. Requested data items not input by the user will be set to zero. Refer to Section V (Sample Input and Output) for a listing of the prompts and the report generated by START after all data prompting has been completed.

After the report has been completed, the user will be prompted:

DO YOU WISH TO RUN ANOTHER START CASE (YES OR NO)

If the response is YES, the user will be prompted:

SMAC DATA GENERATED BY START WILL BE LOST DO YOU WISH TO PRINT THE SMAC DATA (YES OR NO)

If the response is NO, the user will again be prompted for his START input data.

If the response is YES, the system will print the SMAC data in the format required by the SMAC system before prompting for START data. The user may later input this data to the SMAC system using the SMAC pre-processor or punching the card deck himself.

DO YOU WISH TO RUN ANOTHER START CASE

another prompt will appear:

IS SMAC DATA TO BE INPUT TO THE SMAC PROGRAM (YES OR NO)

If NO is the response, the user will be exited from the system and can then LOG OFF or do other processing as desired.

If YES is the response, the user will be prompted for additional information required to prepare the SMAC job stream as when he executes the SMAC command. The prompts will be as they are described in Section III.D, except that the user will not be prompted for data inputs as the data already exists (created by START).

D. SMAC Job Stream Creation

If the SMAC command was given as described in Section III.B or if a SMAC file has been created using START, the following prompts will be issued. The first prompt will be:

KEY IN NEW FILE NAME - SMAC FILE WILL BE BUILT IT MAY BE CHANGED BY THE USER FOR FUTURE SUBMITTA

The prompt character will be a ?. The user will respond with a file name of up to 7 alphanumeric characters. This file will contain the JCL and data which will be transmitted to the IBM 370 for processing.

The user will next be prompted for information required for generating a JOB card for input to the IBM 370. He will be prompted with:

ENTER JOB CARD PARAMETERS MCAUTO AC#, JOB ID

He will respond to the prompt with:

xxxxxxx,yyy

with xxxxxxx being the 7-digit accounting code assigned to the user for account billing and yyyy being a 4-character name chosen by the user. The user will then be prompted with:

CLIENT ID

LS

and the response should be a blank or the extended accounting field mentioned in Section III.A. The user will then be prompted with:

PROGRAMMER ID

He will ordinarily respond with a blank.

However, if the output is to be routed to St. Louis in the event of a bug or some other difficulty on the system, the response will be:

GEDERA 6823 4811

This will guarantee that the output will be routed to the proper individual.

The user will then be prompted with:

KEY IN OUTPUT DESTINATION CODE
IF BLANK, OUTPUT WILL RETURN TO THE ORIGINATOR
ONLY

Normal response is blank.

If a programmer ID response was not a blank, respond with MACC. To route the output to another terminal, respond with the proper terminal ID.

E. Data Input

There are three methods of inputting data to the system.

- 1. The user may load cards on the IBM 370 through a terminal creating a DSS file (see the MCAUTO DSS User's Manual).
- The user may input his data directly into the terminal, using free form input. All data items must be input. If they are to be zero, type a zero. Data items may be separated by blanks or by commas.
- 3. The user may execute the START program.

If the third method has not been used, the user will be prompted with:

IS DATA TO BE INPUT FROM THIS TERMINAL (YES OR NO)

If YES is the response, the user will then be prompted to key in his data in the manner described above in Data Input, Item 2.

NOTE:

When entering table data (after lines 8, 9, 10 and 11) the user may type in all the data himself, or allow the computer to do it if all values following an entry are to be equal to that particular entry and constant from that point on. This can be done by typing an asterisk (*) after the desired table entry. This is a signal to the computer that indicates that the user wishes to propogate the value of the last numeric entry through the end of the table of the particular wheel the user is working on. An example of this is:

Card 10: 1.2 2.3 0.1 9. (user input)

TYPE IN VEHICLE 1 WHEEL STEER TABLE (computer response).

12 VALUES PER FRONT TIRE ARE EXPECTED (7 per line)

Table: 0. 0. -20. *(user input)

Table: 0. 0. -20. *(user input)

The above user input would be interpreted by the computer to be:

Card 10: 1.2 2.3 0.1 0.

Table: 0. 0. -20. -20. -20.

-20. -20. -20. -20.

Table: 0. 0. -20. -20. -20.

-20, -20, -20, -20, -20,

-2(

-20

If NO is the response, the user will be prompted:

KEY IN DSS USER ID AND FILE NAME

The response will be

DSSID, FILENAME

where DSSID is the name of the user's DSS account and FILENAME is the name of the file he is referencing. (See DSS User's Manual for further explanation of DSS.)

After SMAC data has been added to the job stream, the user will be prompted:

IS TIRE TRACK INFORMATION TO BE PRINTED (YES OR NO)

If the response is NO, the SMAC tire track information will not be printed. Otherwise, it will be printed.

F. Job Submission

The user will now be prompted as to whether he wishes to submit the job for processing.

DO YOU WISH TO SUBMIT THIS FILE TO RUN (YES OR NO)

If errors have been made when keying in data, the response will be NO. If the job is to be submitted, the response will be YES.

If the response is YES, the user will be prompted to:

KEY IN FILE NAME THAT WILL RECEIVE THE OUTPUT

The user will respond with a file name of up to 7 characters. It is this file which will be used for display on the Tektronix tube after the job has been run on the IBM 370. The system will generate IBM LINK JOB NAME IS = YYYYZZZZ.

If the response is NO, the user must change the file and submit it himself. Section III.H described this situation.

G. Job Status

After the job has been submitted to the IBM 370, the user may wish to inquire as to its status. This may be done by using the #INQ command.

#INQ YYYYZZZZ

where YYYYZZZZ is the Link ID generated previously.

The following responses are given:

- 1. WAITING TO BE TRANSMITTED.
- 2. TRANSMISSION TO DESTINATION COMPUTER IN PROGRESS.
- 3. JOB RECEIVED ON DESTINATION COMPUTER.

An additional message describes the status of the job on the destination computer.

- ---RUNNING
- ---IN HOLD
- ---WAITING FOR DEVICES
- ---WAITING FOR OPERATOR RESPONSE
- ---WAITING FOR MAIN PROCESSOR
- ---WAITING FOR BREAKDOWN
- 4. JOB COMPLETED ON DESTINATION COMPUTER.
- 5. JOB RECEIVED ON CYBER SERVICE.

If a DEF OUT file was requested, HOST also reports

--- RESULTS IN FILE fid

where "fid" is the file name supplied by the user to the prompt KEY IN FILE NAME THAT WILL RECEIVE THE OUTPUT.

6. NO JOBS FOUND.

This message appears if there is no record of that ID on the given date. This may occur if the ID is incorrectly typed, if the date is not given for an ID submitted some previous day, or if the status information is no longer available.

The file may be displayed after it has been received on the Direct Access Computer.

H. Correcting Errors or Changing Input Data

If a file is to be corrected (JOB was not submitted) or if a file is to be changed (parameters are to be changed) and resubmitted, the following procedure should be used.

1. Saving Old File

If parameters are to be altered and the old file is not to be destroyed, the following should be executed:

#OLD OLDFILE

where OLDFILE is the name of the file which was previously transmitted to the IBM 370.

#REN NEWFILE

where NEWFILE is supplied by the user and is the name of the file to be edited and then submitted.

#SAV

2. Editing the File

#EDIT FILENAME

FILENAME is the name of the file to be submitted to the IBM 370. FILENAME was defined in Section E or Section H.1 using REN command.

Use the Edit Command (see DAC II Edit Manual) to correct or change records as you desire.

#DEF OUT=XXXX

where XXXX is the name of the file which will be used for display on the Tektronix.

#XMIT FILENAME

where FILENAME is the name of the file which you have edited.

The job will then be transmitted. The INQ command may be used as described above to check on the status of the job.

I. Job Termination - Logging Off
To log off the DAC II system, the user types
#BYE

The system responds with an accounting summary.

Sample Input and Output IV.

The sample code contained in this section illustrates the following:

- 1)
- Create SMAC data input from the terminal keyboard. Create SMAC data input using DSS.
 Use of EDIT, DEF OUT and XMIT to resubmit a SMAC job to the IBM 370. 3)
- Execution of the START program.

INPUT SMAC DATA USING THE DAC-II TIME SHARE SYSTEM - SUBMIT JOB TO RUN ON THE 195 -

#-SMACCOM.C0162

SELECT PROGRAM TO BE EXECUTED - (START, SMAC)

?SMAC

KEY IN FILE NAME-SMAC FILE WILL BE BUILT IT MAY BE CHANGED BY THE USER FOR FUTURE SMAC SUBMITTALS ?SMACIN

ENTER JOB CARD PARAMETERS FOR STL MCAUTO AC#, JOB ID

, SMACTEST

CLIENT ID

PROGRAMMER ID :GEDERA 6823 4812

> KEY IN OUTPUT DESTINATION CODE IF BLANK, OUTPUT WILL RETURN TO ORIGINATOR ONLY

:MACC

IS DATA TO BE INPUT FROM THIS TERMINAL? (YES OR NO)

:YES

KEY IN TWO HEADING LINES

:SIMULATION MODEL OF AUTOMOBILE COLLISIONS (SMAC) :CAL-CASE-71-55B

TYPE IN FIRST EIGHT LINES OF DATA

:0.0 2.0 .025 .001 .01 .02 6.0 1.0 2.0

:330.77 337.54 -37, 0.0 247.596 0.0

:637. 227. 180. 0.0 440. 0.0

:57.3 59.7 60. 34200. 9.36 0.0 97.2 -109. 38.4

:53.4 55.6 57.7 25600. 7.98 0.0 93.4 -96.1 35.7

:-10250. -10250. -10195. -10195. :-10250. -10250. -10195. -10195.

:0.0 2.0 1.0 0.0

TYPE IN VEHICLE 1 WHEEL TORQUE TABLE 3 VALUES PER TIRE ARE EXPECTED (7 PER LINE)

:-1200. -1200. -1200.

:-1200. -1200. -1200.

:-1200. *

:-1200. *

TYPE IN NINTH LINE OF DATA

:0.2 0.5 0.1 0.0

```
TYPE IN VEHICLE 2 WHEEL TORQUE TABLE
   4 VALUES PER TIRE ARE EXPECTED (7 PER LINE)
:0.0 0.0 0.0 0.0
:0.0 -1000. -1000. -1000.
:0.0 *
:0.0 -1000. *
 TYPE IN TENTH LINE OF DATA
:0.0 2.0 1.0 1.0
 TYPE IN ELEVENTH LINE OF DATA
:0.0 2.0 1.0 1.0
 TYPE IN LAST FOUR LINES OF DATA
  IF THE LAST DATA LINE IS NOT DESIRED,
 HIT RETURN WHEN THE FOURTH PROMPT SIGN APPEARS
:1.0 1.0 1.0 1.0 0.7 0.7 0.0 0.0
:2.0 0.2 15.0 5.0 50. 50. .55
:.06423 3.5417-3 4.7381-5
IS TIRE TRACK INFORMATION TO BE PRINTED? (YES OR NO)
:YES
  DO YOU WISH TO SUBMIT THIS FILE TO RUN? (YES OR NO)
:YES
  KEY IN FILE NAME THAT WILL RECEIVE THE OUTPUT
: SMACOUT
 JOB SMAC0648 QUEUED FOR ST. LOUIS 370 SERVICE AT 09:19 JAN 16, '78
```

IBM LINK JOB NAME IS = SMAC0648

STOP

9

LIST OF FILE SMACINPT

```
#OLD SMACIN
           #T.TIH
                                                              1,12000
                                                                       0000',0000000,C),
           10//SMACTEST JOB (S,
                                                ',MSGLEVEL=(0,0),
                           'GEDERA 6823 4812
                             LIM=(004.00,0004.00,005,000)
           30//
           40//*FORMAT PR, DDNAME=SYSMSG
           50//*FORMAT PR,DDNAME=FT06F001
           60//*FORMAT PR,DDNAME=FT15F001,CONTROL=SINGLE
           70//*FORMAT PR,DDNAME=SYSMSG,CONTROL=SINGLE,DEST=MACC
           80//*FORMAT PR.DDNAME=FT06F001, DEST=MACC
                   EXEC PGM=SMACIPF, REGION=180K
           90//
           100//STEPLIB DD DSN=DLS.GP12.DOT.SMAC, DISP=SHR
           110//FT01F001 DD DSN=&TEMP,
                        DCB=(RECFM=VBS, LRECL=364, BLKSIZE=1832),
           120//
                        UNIT=SYSDA, DISP=(,PASS), SPACE=(1832,(100,10))
           130//
           140//FT02F001 DD DUMMY
           150//FT06F001 DD SYSOUT=A
           160//SYSUDUMP DD SYSOUT=A
           170//FT05F001 DD *
           180SIMULATION MODEL OF AUTOMOBILE COLLISIONS (SMAC)
           190CAL-CASE-71-55B
                                                                                     2.0
                                 .025
                                         .001
                                                           .02
                                                                   6.0
                                                                            1.0
           200±0.0
                        2.0
                                                  .01
  2
                                         0.0
                                                  247.596 0.0
           210±330.77
                        337.54
                                 -37.
  3
                        227.
                                 180.
                                         0.0
                                                  440.
                                                           0.0
           220±637.
                                                                   97.2
                                                                                     38.4
                                 60.
                                                  9.36
                                                                            -109.
                                         34200.
                                                           0.0
           230±57.3
                        59.7
  5
                                                                                     35.7
                                 57.7
                                                  7.98
                                                                   93.4
                                                                            -96.1
           240±53.4
                                         25600.
                                                           0.0
                        55.6
 6
           250-10250. -10250. -10195. -10195.
 7
           260-10250. -10250. -10195. -10195.
  8
                                1.0
                                         0.0
           270±0.0
                        2.0
                                        -1200.
                   -1200.
                             -1200.
           280
                  -1200.
           290
                              -1200.
                                        -1200.
                   -1200.
                              -1200.
                                        -1200.
           300
                   -1200.
                              -1200.
                                        -1200.
           310
  9
           320±0.2
                        0.5
                                 0.1
                                         0.0
                                            0.0
                                                      0.0
           330
                      0.0
                                 0.0
                                                   -1000.
                              -1000.
                                        -1000.
                      0.0
           340
                                                      0.0
           350
                      0.0
                                 0.0
                                            0.0
                                        -1000.
                                                   -1000.
                              -1000.
           360
                      0.0
 10
                                         1.0
           370±0.0
                        2.0
                                 1.0
 11
                                          1.0
                        2.0
                                 1.0
                                                                            0.0
 12
                        1.0
                                                  0.7
                                                           0.7
                                                                    0.0
                                 1.0
                                          1.0
 13
                                                  50.
                                                           50.
                                                                    .55
           400±2.0
                        0.2
                                 15.0
                                          5.0
 14
           410.06423
                       3.5417-34.7381-5
999
           420
                   1.
           430/*
                     EXEC PGM=SMACPLOT, REGION=140K
           450//STEPLIB DD DSN=DLS.GP12.DOT.SMAC,DISP=SHR
           460//FT01F001 DD DSN=&TEMP, UNIT=SYSDA,
                        DISP=(OLD,DELETE)
           480//FT06F001 DD SYSOUT=A
           490//FT15F001 DD SYSOUT=A, DCB=(RECFM=FB, BLKSIZE=80)
           500//SYSUDUMP DD SYSOUT=A
           510//FT05F001 DD *
                                                        0.
           520
                     6.
                              6.
                                   0
                                       0
                                               . 1
                                                                0.
           530/*
```

195 SYSTEM OUTPUT OF SMAC JOB JOB MAY HAVE BEEN SUBMITTED AS
IN SECTION II OR SECTION III.
THIS IS OUTPUT OF JOB USING FILE
SMACINPT (LISTED IN THIS SECTION)
AS INPUT TO THE 195.

```
EXEC PGM=SMACPLOT.REGION=140K

//STEPLI3 DD DSN=DLS.GP12.DOT.SMAC.DISP=SHR

//FT01F001 DD DSN=&TEMP.UNIT=SYSDA.

// DISP=(OLD.DELETE)

//FT06F001 DD SYSOUT=A

//FT15F001 DD SYSOUT=A

//FT15F001 DD SYSOUT=A

//FT05F001 DD SYSOUT=A

//FT05F001 DD *
      LOCATE::9575DLS.GP12.DOT.SMAC
AL95750E001/DISKCE000E
LOCATE::9575DLS.GP12.DOT.SMAC
AL95750E001/DISKCE000E
AMDS01 SMAC0086 (9575) IN SETUP ON MAIN=SY3
SMAC0086 IEF403I SMAC0086 STARTED TIME=14.05.36
SMAC0086 IEF234E D 506.ASP506
SMAC0086 IEF234E D 507.ASP507
*SMAC0086*01 IECASP0 506 IS SMAC0086 A
*SMAC0086*01 IECASP0 50C IS SMAC0086.
SMAC0086 MACRCDE JOB SMAC0086 STEP RC=006
*SMAC0086 MACRCDE JOB SMAC0086 A
*SMAC0086*01 IECASP0 506 IS SMAC0086 A
*SMAC0086*01 IECASP0 506 IS SMAC0086 A
*SMAC0086*01 IECASP0 507 IS SMAC0086 A
*SMAC0086*01 IECASP0 511 IS SMAC0086 A
*SMAC0086*01 IECASP0 511 IS SMAC0086.
SMAC0086 MACRCDE JOB SMAC0086 STEP RC=006
SMAC0086 MACRCDE JOB SMAC0086 STEP RC=006
SMAC0086 IEF404I SMAC0086 ENDED TIME=14.06.32

//SMAC0086 JOB (5957500000.

//
// BGDERA 6823 4812 ...*SGLEVEL=(0.0).
//
// ROLL=(NO.NO)
***** LOAD MODULE RELOCATION FACTOR = 732AC8 ********
IEF142I - STEP WAS EXECUTED - COND CODE 0000
AMDS09 JOB 9575 (SMAC0086) IN BREAKDOWN
                                                                                                                                                                                                                                                          FT06F001
                                                                                                                                                                                                                                                           ASPI0001
                                                                                                                                                                                                                          RC=0000
                                                                                                                                                                                                                                                          FT06F001
FT15F001
                                                                                                                                                                                                                                                           ASPI0002
                                                                                                                                                                                                                          RC=0000
                                                                                                                                                                                                          0000! •0000000 •C) •
```

CREATE SMAC JOB USING DAC-II-DSS COMBINATION; DO NOT SUBMIT TO 195.

#-SMACCOM.C0162

******** SMAC PRE-PROCESSOR *******

SELECT PROGRAM TO BE EXECUTED - (START, SMAC)
:SMAC

KEY IN FILE NAME-SMAC FILE WILL BE BUILT
IT MAY BE CHANGED BY THE USER FOR FUTURE SMAC SUBMITTALS
SMACIN1
ENTER JOB CARD PARAMETERS FOR STL
MCAUTO AC#, JOB ID
, SMACTEST
CLIENT ID

PROGRAMMER ID:GEDERA 6823 4812

KEY IN OUTPUT DESTINATION CODE IF BLANK, OUTPUT WILL RETURN TO ORIGINATOR ONLY

:MACB

IS DATA TO BE INPUT FROM THIS TERMINAL? (YES OR NO)

:NO

KEY IN DSS USER ID AND FILE NAME

:DSSID,DSSFILE

DO YOU WISH TO SUBMIT THIS FILE TO RUN? (YES OR NO)

:NO STOP

LIST OF FILE SMACINPT1

```
#OLD SMACIN1
#LNH
                                                ','2000
                                                         0000',0000000,C),
10//SMACTEST JOB (S,
               GEDERA 6823 4812 ',MSGLEVEL=(0,0),
20//
                 LIM=(004.00,0004.00,005,000)
30//
40//*FORMAT PR,DDNAME=SYSMSG
50//*FORMAT PR,DDNAME=FT06F001
60//*FORMAT PR,DDNAME=FT15F001,CONTROL=SINGLE
70//* ROUTE OUTPUT TO MIKE GEDERA ******
80//*FORMAT PR,DDNAME=SYSMSG,CONTROL=SINGLE,DEST=MACB
90//*FORMAT PR,DDNAME=FT06F001,DEST=MACB
        EXEC PGM=SMACIPF, REGION=180K
110//STEPLIB DD DSN=DLS.GP12.DOT.SMAC, DISP=SHR
120//FT01F001 DD DSN=&TEMP,
            DCB=(RECFM=VBS, LRECL=364, BLKSIZE=1832),
130//
140//
            UNIT=SYSDA, DISP=(, PASS), SPACE=(1832, (100, 10))
150//FT02F001 DD DUMMY
160//FT06F001 DD SYSOUT=A
170//SYSUDUMP DD SYSOUT=A
180//FT05F001 DD *
190/*DSS DSSID
200=INCLUDE DSSFILE
210/*
220//
         EXEC PGM=SMACPLOT, REGION=140K
230//STEPLIB DD DSN=DLS.GP12.DOT.SMAC,DISP=SHR
240//FT01F001 DD DSN=&TEMP, UNIT=SYSDA,
            DISP=(OLD, DELETE)
250//
260//FT06F001 DD SYSOUT=A
270//FT15F001 DD SYSOUT=A, DCB=(RECFM=FB, BLKSIZE=80)
280//SYSUDUMP DD SYSOUT=A
290//FT05F001 DD *
                                                  0.
300
                 б.,
                      0
                          0
                                  .1
                                          0.
         6.
310/*
```

č

```
an existing SMAC input file and then resubmit
                                   for processing. In this example, the file
                                   SMACINPT is changed so that the starting time
#OLD SMACIN
                                   is 1. and the integration interval is .0005.
#REP 200 '0.0' '1. '
                                   In addition, tire track prints are eliminated.
#REP 200 '.001 ' '.0005'
#REP 420 11.
#SAV
#LNII
                                                   ','2000 0000',0000000,C),
10//SMACTEST JOB (S.
                'GEDERA 6823 4812
                                       ', MSGLEVEL= (0,0),
                  LIM=(004.00,0004.00,005,000)
30//
40//*FORMAT PR, DDNAME=SYSMSG
50//*FORMAT PR,DDNAME=FT06F001
60//*FORMAT PR,DDNAME=FT15F001,CONTROL=SINGLE
70//*FORMAT PR,DDNAME=SYSMSG,CONTROL=SINGLE,DEST=MACC
80//*FORMAT PR,DDNAME=FT06F001,DEST=MACC
        EXEC PGM=SMACIPF, REGION=180K
90//
100//STEPLIB DD DSN=DLS.GP12.DOT.SMAC,DISP=SHR
110//FT01F001 DD DSN=&TEMP,
             DCB=(RECFM=VBS, LRECL=364, BLKSIZE=1832),
120//
             UNIT=SYSDA, DISP=(, PASS), SPACE=(1832, (100, 10))
130//
140//FT02F001 DD DUMMY
150//FT06F001 DD SYSOUT=A
160//SYSUDUMP DD SYSOUT=A
170//FT05F001 DD *
180SIMULATION MODEL OF AUTOMOBILE COLLISIONS (SMAC)
190CAL-CASE-71-55B
                                                                           2.0
                                                         6.0
                                                                  1.0
                      .025
                               .0005
                                        .01
                                                 .02
             2.0
200±1.
                                        247.596 0.0
                               0.0
210±330.77
             337.54
                      -37.
                                        440.
                                                0.0
                               0.0
220±637.
             227.
                      180.
                                                         97.2
                                                                  -109.
                                                                           38.4
                                                0.0
                                        9.36
230±57.3
             59.7
                      60.
                               34200.
                                                                           35.7
                                                         93.4
                                                                  -96.1
                                                0.0
                                        7.98
                      57.7
240±53.4
             55.6
                               25600.
250-10250. -10250. -10195. -10195.
260-10250. -10250. -10195. -10195.
                      1.0
                               0.0
             2.0
270±0.0
                              -1200.
                   -1200.
        -1200.
280
                   -1200.
                              -1200.
        -1200.
290
                   -1200.
                              -1200.
        -1200.
300
                   -1200.
        -1200.
                              -1200.
310
                               0.0
              0.5
                      0.1
320±0.2
                                 0.0
                                            0.0
           0.0
                      0.0
330
                                         -1000.
                              -1000.
           0.0
340
                   -1000.
                                            0.0
                                 0.0
           0.0
                      0.0
350
                                         -1000.
                   -1000.
                              -1000.
           0.0
360
                               1.0
              2.0
                      1.0
370±0.0
                               1.0
                      1.0
              2.0
 380±0.0
                                                                  0.0
                                                          0.0
                                        0.7
                                                 0.7
                      1.0
                               1.0
              1.0
 390±1.0
                                                 50.
                                                          .55
                                        50.
                      15.0
                               5.0
              0.2
 400±2.0
             3.5417-34.7381-5
410.06423
 420
```

6

7

1

1

1

1

430/#

14

1999

This example demonstrates how a user may edit

```
440// EXEC PGM=SMACPLOT, REGION=140K
450//STEPLIB DD DSN=DLS.GP12.DOT.SMAC,DISP=SHR
460//FT01F001 DD DSN=&TEMP, UNIT=SYSDA,
              DISP=(OLD,DELETE)
470//
480//FT06F001 DD SYSOUT=A
490//FT15F001 DD SYSOUT=A, DCB=(RECFM=FB, BLKSIZE=80)
500//SYSUDUMP DD SYSOUT=A
510//FT05F001 DD *
                                                              ٥.
                                                    0.
                                 0
                                          . 1
           б.
                     6.
                            0
520
530/*
```

EXECUTE THE START PROGRAM

```
#-SMACCOM.C0162

******** SMAC PRE-PROCESSOR *******

SELECT PROGRAM TO BE EXECUTED - (START, SMAC)
:START
```

```
****************
                      START PROGRAM (VERSION 2)
**********
  ENTER REST POSITIONS AND HEADINGS FOR VEHICLE 1 AND VEHICLE 2
FORM: XCR1(FT.) YCR1(FT.) PSIR1(DEG) XCR2(FT) YCR2(FT) PSIR2(DEG)
:-8.7 4.3 -22. -.8 -2.1 164.
  ENTER IMPACT POSITIONS AND HEADINGS FOR VEHICLE 1 AND 2
FORM: XSC1(FT) YSC1(FT) PSIS1(DEG) XCS2(FT) YCS2(FT) PSIS2(DEG)
:-8.4 1. 0. 8.4 -1. 180.
  DID ROTATIONAL (YAW) AND/OR LATERAL SKIDDING OF VEHICLE 1 STOP BEFORE
REST POSITION WAS REACHED? (ANSWER YES OR NO)
:NO
  DID ROTATIONAL (YAW) AND/OR LATERAL SKIDDING OF VEHICLE 2 STOP BEFORE
REST POSITION WAS REACHED? (ANSWER YES OR NO)
  ENTER VEHICLE 1 YAW ROTATION INDICATOR
FORM: IRT1 (0.=NO ROTATION, -1.=COUNTERCLOCKWISE, 1.=CLOCKWISE)
  DID VEHICLE 1 ROTATE MORE THAN 360 DEG. BETWEEN SEPARATION AND REST?
 (ANSWER YES OR NO)
  ENTER VEHICLE 2 YAW ROTATION INDICATOR
FORM: IRT2 (0.=NO ROTATION,-1.=COUNTERCLOCKWISE, 1.=CLOCKWISE)
  DID VEHICLE 2 ROTATE MORE THAN 360 DEGREES BETWEEN SEPARATION AND REST?
 (ANSWER YES OR NO)
:NO
  ENTER ROLLING RESISTANCES OF WHEELS OF VEHICLE 1
 (DAMAGE, BRAKES, ENGINE BRAKING, TIRES, 0.00 TO 1.00, WHERE 1.00=LOCKED)
       RF LF RR LR
:0. 1. 0. 0.
  ENTER ROLLING RESISTANCES OF WHEELS OF VEHICLE 2
 (DAMAGE, BRAKES, ENGINE BRAKING, TIRES, 0.00 TO 1.00, WHERE 1.00=LOCKED)
       RF LF RR LR
:0. 1. 0. 0.
   ENTER NOMINAL TIRE-GROUND FRICTION COEFFICIENT FORM: MU
   ENTER VEHICLE 1 TYPE
 (1.=SUBCOMPACT, 2.=COMPACT, 3.=INTERMEDIATE, 4.=FULLSIZE)
   ENTER VEHICLE 2 TYPE
 (1.=SUBCOMPACT, 2.=COMPACT, 3.=INTERMEDIATE, 4.=FULLSIZE)
: 4.
```

```
Page 4.10
  ARE THE ACTUAL WEIGHTS OF THE VEHICLES KNOWN? (ANSWER YES OR NO)
ENTER WEIGHTS OF VEHICLE 1 AND VEHICLE 2 FORM: WT1(LB.) WT2(LB.) (0. =
                               (0. = TAKE DEFAULT VALUE)
:3080. 3950.
  ENTER A 7 CHARACTER VDI FOR VEHICLE 1
:12FYEW4
  ENTER A 7 CHARACTER VDI FOR VEHICLE 2
  ENTER A 72 CHARACTER RUN TITLE
:GEDERA START TEST
                       ACCIDENT RECONSTRUCTION - START RESULTS
                                 GEDERA START TEST
                         COLLISION CONDITIONS
                                              VEHICLE # 2
      VEHICLE # 1
```

XC10' YC10 PSI10 PSI1D0 U10 V10		FT. DEGREES DEG/SEC MPH	XC20' YC20' PSI20 PSI2D0 U20 V20	= 8.400 = -1.000 = 180.000 = 0.000 = 31.739 = 0.000	FT. DEGREES DEG/SEC MPH
		SEPARATION	CONDITIONS		
XCS1 YCS1 PSIS1 US1 VS1 PSISD1	= -8.400 = 1.000 = 0.000 =455 = 5.002 = -47.716	FT. DEG MPH	XCS2 YCS2 PSIS2 US2 VS2 PSISD2	= 8.400 = -1.000 = 180.000 = 10.097 = 1.210 = -20.555	FT. DEG MPH MPH
		DIMENSIONS	AND INERTIAL	PROPERTIES	
A1 B1 TR1 I1 M1 XF1 XR1 YS1	= 63.000 = 63.100 = 28600.0	INCHES LB-SEC**2-IN LB-SEC**2/IN INCHES INCHES	A2 B2 TR2 I2 M2 XF2 XR2 YS2	= 36678.6	INCHES INCHES LB-SEC**2-IN LB-SEC**2/IN INCHES INCHES

```
DO YOU WISH TO RUN ANOTHER START CASE -(YES OR NO)

:NO
IS SMAC DATA TO BE INPUT TO THE SMAC PROGRAM(YES OR NO)
:NO
SMAC DATA GENERATED BY START WILL BE LOST
DO YOU WISH TO PRINT THE SMAC DATA-(YES OR NO)
:NO
STOP
```

V. Execution of the SMAC system on the Direct Access Computer (DAC)

The user of this system can execute any combination of the START program, the SMAC data generating program, the SMAC collision program, and the plotting program used to display the collision by initiating the MONITOR control program on the DAC-II system.

A. Log On Procedure

To connect the terminal to the DAC-II system, the user dials the phone number of a line of the appropriate speed (10 or 30 cps), listens for a beep, and types the return key once. The system responds:

MCAUTO - 10:15 OCT 15, '75 LOGON PLEASE: PASSWORD

NNNNNNN (user password is entered on overtype for security.)

The user enters the account number and password. The form is:

LOGON PLEASE: ACCOUNT NUMBER PASSWORD MNNNNNNN

B. Initialization of SMAC system

#RNH MONLOM.C0162

This line must be typed by the user. (# is a prompt and is not typed by the user.) This will load the system and give MONITOR program control. The user will now be prompted with:

INPUT SYMBOL OF SMAC OPTION YOU WISH TO RUN (CHARACTER COMBINATION OF I, O, P, OR END)

The prompt character will be a ?.

The user must respond with a symbol code consisting of the letters 'I', 'O', 'P', or 'END'. The code 'END' is an indicator to the computer that the user is finished running the SMAC program and will terminate the MONITOR program. A definition of the symbol code is:

- I = The START program or the SMAC data generating program is chosen to generate a SMAC input file.
- IO = (a) The START program or the SMAC data generating program is chosen to generate a SMAC input fil
 - (b) The SMAC program is run using the input data file generated in step (2a) and produces a reduced printout on the users terminal, the full printout on a user specified file, and plot data on a user specified file.

- IOP = (a) The START program or the SMAC data generating program is chosen to generate a SMAC input file.
 - (b) The SMAC program is run using the input data file generated in step (3a) and produces a reduced printout on a users terminal, the full printout on a user specified file, and plot data on a user specified file.
 - (c) The PLOT program is run using the plot data file generated in step (3b) and produces plotting output on a user specified file that can be input to the FASTDRAW system.
- The SMAC program is run using an input data file supplied by the user and produces a reduced print-out on the users terminal, the full printout on a user specified file, and plot data on a user specified file.
- OP = (a) The SMAC program is run using an input data file supplied by the user and produces a reduced printout on the users terminal, the full printout on a user specified file, and plot data on a user specified file.
 - (b) The PLOT program is run using the plot data file generated in step (5a) and produces plotting output on a user specified file that can be input to the FASTDRAW system.
- P = The PLOT program is run using a plot data file supplied by the user and produces plotting output on a user specified file that can be input to the FASTDRAW system.
- END = Terminates the MONITOR program.

Control automatically reverts to the MONITOR program after processing is completed for options I through P and an additional symbolic input is expected for mult case runs.

C. SMAC Data Generating Program

i-

When the user reply to the MONITOR program is 'I', 'IO' or 'IOP', the START-SMAC data generating program is initiated. The user will be prompted with:

After the prompt, the user must respond with either START or SMAC.

If SMAC is selected, the user will be issued a series of prompts which will enable him to prepare a SMAC input data file for processing (see Section III). The user will also be prompted to supply a name for this data file. The data file will be saved in the users account until the user wishes to delete it.

The SMAC input data file may be submitted for processing at a later date to the SMAC program on the DAC-II System by choosing option 'O' or 'OP' on the MONITOR program and supplying the file name to the program.

D. START program

If START is selected, the user will be issued a series of prompts which will allow him to input basic accident data. The START program will then generate output consisting of:

Collision Conditions Separation Conditions Dimensions and Inertial Properties

The user will also be prompted to supply a name for the data file that START generates. This data file will be saved in the users account until the user wishes to delete it.

The START input data file may be submitted for processing at a later date to the SMAC program on the DAC-II system by choosing option 'O' or 'OP' on the MONITOR program and supplying the file name to the program.

All numerical data may be input with a free format to both the START and SMAC data generating programs. Data items must be separated by at least one blank. The message

ERROR IN INPUT - RETYPE THIS LINE

will be printed whenever the system detects illegal characters in the numerical data. The user must re-enter the line of data which contained the illegal data. Requested data items not input by the user will be set to zero. Refer to Section V (Sample Input and Output) for a listing of the prompts and the report generated by START after all data prompting has been completed.

Respond with DIS.

You will then be prompted:

TERMINAL CODE:

Respond with TEK if using a Tektronix tube.

B. If this file has been displayed previously, the following procedure should be used:

*USE DISPIPF

DISPIPF is the file built in using the BUI command (Section IV.A).

*DIS

The user will now be prompted TERMINAL CODE as in Section IV.A. The picture will then be generated rotated 90°. To re-orient the view, respond to the prompt character >.

REO 90

The view will now be generated in the proper orientation.

To add the annotation to the drawing, respond to the next > with

ANN

1. Windowing

Whenever a blow-up of a certain section of the drawing is desired, the user may use the WIN command

>WIN

The user is instructed to

ENTER TWO POINTS WITH CURSOR

Points are entered by reading the graphics cursor. Two points define the diagonal of a rectangular window. The image is redrawn showing only the parts of the previous image which were inside the window enlarged to occupy the whole screen.

E. SMAC Program

The SMAC program processes the input data file automatically passed to it from the START or SMAC data generating programs when utilizing MONITOR options 'O' and 'OP'. Once processing begins, the SMAC program prompts the user for a file name in which to store the complete SMAC output and a second file name in which to store the plot data that the SMAC program generates. The last two files that are prompted for will be saved in the users account until the user wishes to delete them.

The program also produces a modified output (selected variables of the complete output) that is directed to the users console. If the user wishes to interrogate the complete SMAC output file he may use the LIST command available on the DAC system or use the PRINT command on the HOST system (see Section VI) to route the desired file to a high speed printer in the users facility.

F. PLOT Program

The PLOT program processes the plot data file automatically passed to it form the SMAC program when utilizing MONITOR options 'IOP' and 'OP' or prompts the user for a plot data file name when utilizing MONITOR option 'P'. Once processing begins, the PLOT program prompts the user for a file name in which to store the plotting output that the PLOT program generates. This file will be saved in the users account for later display on the FASTDRAW system until the user wishes to delete it.

G. Data Input

There are two methods of entering data to the system.

1. The user may input his data directly into the terminal, using free form input via the SMAC data generating program. All data items must be input as per Enclosure I. If they are to be zero; type a zero. All data items must be separated by one or more blanks.

2. The user may execute the START program and, by inputting the proper responses in free field format to queries asked by the program on input data file is generated.

If method 1 is used, the user will be prompted to key in his data in the manner described above in Data Input, Item 1. After the SMAC data generating program has created the input data file the user will be prompted:

IS TIRE TRACK INFORMATION TO BE PRINTED (YES OR NO)

If the response is NO, the SMAC tire track information will not be printed. Otherwise, it will be printed.

NOTE: When entering table data (after lines 8, 9, 10 and 11) the user may type in all the data himself, or allow the computer to do it if all value following an entry are to be equal to that particular entry and constant from that point on. This can be done by typing an asterisk (*) after the desired table entry. This is a signal to the computer that indicates that the user wishes to propogate the value of the last numeric entry through the end of the table of the particular wheel the user is working on. An example of this is:

Card 10: 1.2 2.3 0.1 0. (user input)

TYPE IN VEHICLE 1 WHEEL STEER TABLE (computer resp 12 VALUES PER FRONT TIRE ARE EXPECTED (7 per line)

Table: 0. 0. 0. -20. * (user input)

Table: 0. 0. -20. * (user input)

The above user input would be interpreted by the computer to be:

Card 10: 1.2 2.3 0.1 0.

Table: 0. 0. 0. -20. -20. -20. -20. -20.

Table: 0. 0. 0. -20. -20. -20. -20. -20.

ons

H. Correcting Errors or Changing Input Data

If a file is to be corrected or if a file is to be changed (parameters are to be changed) and resubmitted, the following procedure should be used.

1. Saving Old File

If parameters are to be altered and the old file is not to be destroyed, the following should be executed:

#OLD OLDFILE

where OLDFILE is the name of the file which was previously generated on the DAC-II system.

#REN NEWFILE

where NEWFILE is supplied by the user and is the name of the file to be edited and then submitted.

#SAV

2. Editing the File

#EDIT FILENAME

FILENAME is the name of the file to be processed on the DAC-II system. FILENAME was defined in Section E or Section H.1 using REN command.

Use the Edit Command (see DAC-II Edit Manual) to correct or change records as you desire.

I. Job Termination - Logging Off

To log off the DAC-II system the user types

#BYE

The system responds with an accounting summary.

VI. Sample Input and Output

The sample code contained in this section illustrates the following:

- 1) Create SMAC data input from the terminal using the SMAC data generator (option 'I').
- 2) Create SMAC data input from the terminal using the START program (option 'I').
- 3) Create SMAC data, input from the terminal using the SMAC data generator and run this data in the SMAC program (option 'IO').
- 4) Create SMAC data input from the terminal using the SMAC data generator, run this data in the SMAC program and create a plot file (option 'IOP').
- 5) Run the SMAC program with data created previously (option '0').
- 6) Run the SMAC program with data created previously and create a plot file (option 'OP').
- 7) Create a plot file from plot data created previously (option 'P').
- 8) Input data created with the SMAC data generating program.
- 9) Input data created with the START program.

INPUT SYMBOL OF SMAC OPTION YOU WISH TO RUN (CHARACTER COMBINATION OF I, O, P, OR END)

:I ******* SMAC PRE-PROCESSOR ******** SELECT PROGRAM TO BE EXECUTED - (START, SMAC) :SMAC Create SMAC data input from the terminal using the SMAC data generator (option 'I').

KEY IN FILE NAME-SMAC FILE WILL BE BUILT
IT MAY BE CHANGED BY USER FOR FUTURE SMAC SUBMITTALS
(7 CHAR. OR LESS)

:FILE2

KEY IN TWO HEADING LINES

:SIMULATION MODEL OF AUTOMOBILE COLLISIONS (SMAC) :CAL-CASE-71-55B

TYPE IN FIRST EIGHT LINES OF DATA

:0.0 2.0 .025 .001 .01 .02 6.0 1.0 2.0 :330.77 337.54 -37. 0.0 247.596 0.0 :637. 227. 180. 0.0 440. 0.0 :57.3 59.7 60. 34200. 9.36 0.0 97.2 -109. 38.4 :53.4 55.6 57.7 25600. 7.98 0.0 93.4 -96.1 35.7 :-10250. -10250. -10195. -10195. :-10250. -10250. -10195. -10195. :0.0 2.0 1.0 0.0

TYPE IN VEHICLE 1 WHEEL TORQUE TABLE
3 VALUES PER TIRE ARE EXPECTED (7 PER LINE)

:-1200. -1200. -1200. :-1200. *

:-1200. * :-1200. *

TYPE IN NINTH LINE OF DATA

:0.2 0.5 0.1 0.0

TYPE IN VEHICLE 2 WHEEL TORQUE TABLE
4 VALUES PER TIRE ARE EXPECTED (7 PER LINE)

:0. *

:0. -1000. *

:0. *

:0. -1000. *

TYPE IN TENTH LINE OF DATA

:0.0 2.0 1.0 1.0

TYPE IN ELEVENTH LINE OF DATA

:0.0 2.0 1.0 1.0

TYPE IN LAST FOUR LINES OF DATA
IF THE LAST DATA LINE IS NOT DESIRED,
HIT RETURN WHEN THE FOURTH PROMPT SIGN APPEARS
:1.0 1.0 1.0 1.0 0.7 0.7 0.0 0.0
:2.0 0.2 15. 5.0 50. 50. .55
:.06423 3.5417-3 4.7381-5

IS TIRE TRACK INFORMATION TO BE PRINTED? (YES OR NO)

:NO

INPUT SYMBOL OF SMAC OPTION YOU WISH TO RUN (CHARACTER COMBINATION OF I, O, P, OR END)

:END STOP

MRU= 6.923

#

74.

INPUT SYMBOL OF SMAC OPTION YOU WISH TO RUN (CHARACTER COMBINATION OF I. O. P. OR END)

Create SMAC data input from the terminal using the START program (option 'I').

```
?I
******* SMAC PRE-PROCESSOR ********
SELECT PROGRAM TO BE EXECUTED - (START, SMAC)
?START
```

```
**********
                      START PROGRAM (VERSION 2)
ENTER REST POSITIONS AND HEADINGS FOR VEHICLE 1 AND VEHICLE 2
FORM: XCR1(FT.) YCR1(FT.) PSIR1(DEG) XCR2(FT) YCR2(FT) PSIR2(DEG)
?-8.7 4.3 -22. -.8 -2.1 164.
  ENTER IMPACT POSITIONS AND HEADINGS FOR VEHICLE 1 AND 2
FORM: XSC1(FT) YSC1(FT) PSIS1(DEG) XCS2(FT) YCS2(FT) PSIS2(DEG)
?-8.4 1. 0. 8.4 -1. 180.
  DID ROTATIONAL (YAW) AND/OR LATERAL SKIDDING OF VEHICLE 1 STOP BEFORE
REST POSITION WAS REACHED? (ANSWER YES OR NO)
2NO
  DID ROTATIONAL (YAW) AND/OR LATERAL SKIDDING OF VEHICLE 2 STOP BEFORE
REST POSITION WAS REACHED? (ANSWER YES OR NO)
  ENTER VEHICLE 1 YAW ROTATION INDICATOR
FORM: IRT1 (0.=NO ROTATION, -1.=COUNTERCLOCKWISE, 1.=CLOCKWISE)
  DID VEHICLE 1 ROTATE MORE THAN 360 DEG. BETWEEN SEPARATION AND REST?
 (ANSWER YES OR NO)
  ENTER VEHICLE 2 YAW ROTATION INDICATOR
FORM: IRT2 (0.=NO ROTATION,-1.=COUNTERCLOCKWISE,1.=CLOCKWISE)
  DID VEHICLE 2 ROTATE MORE THAN 360 DEGREES RETWEEN SEPARATION AND REST?
 (ANSWER YES OR NO)
SNO
  ENTER ROLLING RESISTANCES OF WHEELS OF VEHICLE 1
 (DAMAGE, BRAKES, ENGINE BRAKING, TIRES, 0.00 TO 1.00, WHERE 1.00=LOCKED)
FORM: RF LF RR LR
20. 1. 0. 0.
  ENTER ROLLING RESISTANCES OF WHEELS OF VEHICLE 2
 (DAMAGE, BRAKES, ENGINE BRAKING, TIRES, 0.00 TO 1.00, WHERE 1.00=LOCKED)
       RF LF RR LR
?0. 1. 0. 0.
  ENTER NOMINAL TIRE-GROUND FRICTION COEFFICIENT FORM: MU
  ENTER VEHICLE 1 TYPE
 (1.=SUBCOMPACT, 2.=COMPACT, 3.=INTERMEDIATE, 4.=FULLSIZE)
  ENTER VEHICLE 2 TYPE
 (1.=SUBCOMPACT,2.=COMPACT,3.=INTERMEDIATE,4.=FULLSIZE)
```

ARE THE ACTUAL WEIGHTS OF THE VEHICLES KNOWN? (ANSWER YES OR NO)

ENTER WEIGHTS OF VEHICLE 1 AND VEHICLE 2

FORM: WT1(LB.) WT2(LB.) (0. = TAKE DEFAULT VALUE)

?3080. 3950.

ENTER A 7 CHARACTER VDI FOR VEHICLE 1

?12FYEW4

ENTER A 7 CHARACTER VDI FOR VEHICLE 2

?12FYEW5

ENTER A 72 CHARACTER RUN TITLE

?GEDERA START TEST

ACCIDENT RECONSTRUCTION - START RESULTS

GEDERA START TEST

COLLISION CONDITIONS

VEHICLE # 1

VEHICLE # 2

XC10'	===	-8.400	PT.	XC20 '	==	8.400	FT.
YC10	=	1.000	FT.	YC 20 *	===	-1.000	FT.
PSI10	=	0.000	DEGREES	PSI20	=	180.000	DEGREES
PSI1D0	===	0.000	DEG/SEC	PSI2D0	***	0.000	DEG/SEC
U10	22	27.300	MPH	U20	=	31.739	MPH
V10	==	0.000	MPH	V20	=	0.000	MPH

SEPARATION CONDITIONS

XCS1	==	-8.400	FT.	XCS 2	=	8.400	FT.
YCS1	=	1.000	FT.	YCS 2	==	-1.000	FT.
PSIS1	==	0.000	DEG	PSIS2	=	180.000	DEG
US 1	=	455	MPH	US2	=	10.097	MPH
vs1	==	5.002	MPH	VS 2	222	1.210	MPH
PSISD1	=	-47.716	DEG/SEC	PSISD2	==	-20.555	DEG/SEC

DIMENSIONS AND INERTIAL PROPERTIES

A1	= 60.500	INCHES	A2	= 60.500	INCHES
в1	= 63.000	INCHES	В2	= 63.000	INCHES
TR1	= 63.100	INCHES	TR2	= 63.100	INCHES
I1	= 28600.0	LB-SEC**2-IN	. 12		LB-SEC**2-IN
M1	= 7.971	LB-SEC**2/IN	M2	= 10.223	LB-SFC**2/IN
XF1	= 100.500	INCHES	XF2	= 100.500	
XR1	=-119,600	INCHES	XR2	=-119,600	INCHES

3

5

9

10

11

12

13

14

```
YS1 = 39.600 INCHES
                                    YS2 = 39.600 INCHES
DO YOU WISH TO PRINT THE SMAC DATA - (YES OR NO)
?YES
SIMULATION MODEL OF AUTOMOBILE COLLISIONS (SMAC)
GEDERA START TEST
                                                 30. 5.0
                                                                2.0
                  .025
                         .001
    0.0
         4.0
                                .01
                                         .001
                                        0.00
                       0.00
-100.80
         12.00
                  0.00
                               480.49
 100.80 -12.00 180.00
                                558.60
                                         0.00
  60.50
                                         0.0
                                               100:50 -119.60
                                                               39.60
        63.00
                63.10 28600.0
                               7.97
                                         0.0
                                               100.50 -119.60
                                                               39.60
  60.50
        63.00
               63.10 36678.6
                                10.22
-11572. -11572. -11113. -11113.
-11572. -11572. -11113. -11113.
   .125 .175 .01
                         0.0
                                                   -0.00
               0.0
                         0.0
                                -0.00
                                         -0.00
      0.0
                                                  -392.79
      0.0
               0.0
                         0.0
                               -392.79
                                        -392.79
                                                  -0.00
                                         -0.00
      0.0
               0.0
                         0.0
                                -0.00
      0.0
               0.0
                                -0.00
                                          -0.00
                                                    -0.00
                         0.0
           .175 .01
   .125
                         0.0
                                                   -0.00
                                -0.00
                                          -0.00
               0.0
      0.0
                         0.0
                                        -503.74
                                                  -503.74
                               -503.74
      0.0
               0.0
                         0.0
                                                   -0.00
                                         -0.00
                                -0.00
      0.0
                0.0
                         0.0
                                                    -0.00
                                          -0.00
      0.0
                0.0
                         0.0
                                 -0.00
                         1.0
                .10
    0.0
            .30
                   .10
           .30
                          1.0
    0.0
 -2400.
                 2400.
                         2400.
                                         .50
          2400.
                                   .50
                                                 0.0
                                        50.00
                                                 0.55
    2.0
          . 2
                  15.0
                          5.0
                                 50.00
0.046061.7547-31.6711-5
DO YOU WISH TO SAVE THE SMAC DATA FILE - (YES OR NO)
?YES
```

KEY IN FILE NAME-SMAC FILE WILL BE BUILT IT MAY BE CHANGED BY USER FOR FUTURE SMAC SUBMITTALS (7 CHAR. OR LESS)

?FILE3

IS TIRE TRACK INFORMATION TO BE PRINTED? (YES OR NO)

?NO

INPUT SYMBOL OF SMAC OPTION YOU WISH TO RUN (CHARACTER COMBINATION OF I, O, P, OR END)

?END

STOP

MRU= 7.442

#

INPUT SYMBOL OF SMAC OPTION YOU WISH TO RUN (CHARACTER COMBINATION OF I, O, P, OR END)

IO

******** SMAC PRE-PROCESSOR *******

SELECT PROGRAM TO BE EXECUTED - (START, SMAC)

KEY IN FILE NAME-SMAC FILE WILL BE BUILT IT MAY BE CHANGED BY USER FOR FUTURE SMAC SUBMITTALS (7 CHAR. OR LESS)

Create SMAC data, input from the terminal using the SMAC data generator, run this data in the SMAC program (option 'IO').

?FILE2

KEY IN TWO HEADING LINES

?SIMULATION MODEL OF AUTOMOBILE COLLISIONS (SMAC) ?CAL-CASE-71-55B

TYPE IN FIRST EIGHT LINES OF DATA

70.0 2.0 .025 .001 .01 .02 6.0 1.0 2.0 2330.77 337.54 -37. 0.0 247.596 0.0 2637. 227. 180. 0.0 440. 0.0 257.3 59.7 60. 34200. 9.36 0.0 97.2 -109. 38.4 253.4 55.6 57.7 25600. 7.98 0.0 93.4 -96.1 35.7 2-10250. -10250. -10195. -10195. 20.0 2.0 1.0 0.0

TYPE IN VEHICLE 1 WHEEL TORQUE TABLE
3 VALUES PER TIRE ARE EXPECTED (7 PER LINE)

?-1200. *

?-1200. *

?-1200. *

?-1200. *

TYPE IN NINTH LINE OF DATA

70.2 0.5 0.1 0.0

TYPE IN VEHICLE 2 WHEEL TORQUE TABLE
4 VALUES PER TIRE ARE EXPECTED (7 PER LINE)

20.0 *

?0.0 -1000. *

?0.0 *

?0.0 -1000. *

TYPE IN TENTH LINE OF DATA

20.0 2.0 1.0 1.0

TYPE IN ELEVENTH LINE OF DATA

20.0 2.0 1.0 1.0

TYPE IN LAST FOUR LINES OF DATA IF THE LAST DATA LINE IS NOT DESIRED, HIT RETURN WHEN THE FOURTH PROMPT SIGN APPEARS 21.0 1.0 1.0 1.0 0.7 0.7 0.0 0.0 **?2.0** 0.2 15.0 5.0 50. 50. .55 2.06423 3.5417-3 4.7381-5

IS TIRE TRACK INFORMATION TO BE PRINTED? (YES OR NO)

?NO

INPUT FILE NAME THAT IS TO RECEIVE SMAC OUTPUT (7 CHAR. OR LESS)

?FILE4

INPUT FILE NAME THAT IS TO RECEIVE PLOT FILE (7 CHAR. OR LESS)

?FILE5

SIMULATION MODEL OF AUTOMOBILE COLLISIONS (SMAC) CAL-CASE-71-55B

INITIAL CONDITIONS

		THITTME CONDITION			
VEHIC	CLE NO. 1		VEHIC	CLE NO.	2
XC10'	= 330.770	INCHES	XC20'	= 637.0	00 INCHES
		INCHES	YC20'	= 227.0	00 INCHES
PSI10	= 337.540 = -37.000	DEGREES	PSI20	= 180.0	00 INCHES 00 DEGREES 00 DEG/SEC
PST1D0	= 0.000	DEG/SEC	PSI2D0	= 0.0	00 DEG/SEC
U10	= 247.596	IN/SEC	U20	= 440.0	00 IN/SEC
V10	= 247.596 = 0.000	IN/SEC	V20		00 IN/SEC
	5,000	2, 0.2.0			•
	CALCULATIO	ON CONSTANTS			•
DELPSI	= 2.000	DEGREES			
DELRHO	= .200	INCHES			
LAMBDA	= 15.000	LB/IN, PRESSURE ERROR			
		IN/SEC, MIN. FOR FRICT			
		•			
	DIME	NSIONS AND INERTIAL P	ROPERTIES		
A1	= 57.300 $=$ 59.700	INCHES			00 INCHES
B1	= 59.700	INCHES	B2	= 55.6	00 INCHES
TR1	= 60.000	INCHES LB-SEC**2-IN	TR2	= 57.7	00 INCHES
I1	= 34200.	LB-SEC**2-IN			00. LB-SEC**2-IN
M1	= 9.360	LB-SEC**2/IN	M2	= 7.9	80 LB-SEC**2/IN
PSIR10	= 0.000	DEGREES	PSIR20	= 0.0	000 DEGREES
XF1		INCHES			100 INCHES
XR1	=-109.000	INCHES	XR2	= -96.1	00 INCHES

```
YS2 = 35.700 INCHES
YS1 = 38.400 INCHES
        DEFORMABLE LAYER
KV1
        = 50.000 LB/(IN**2)
KV2
            50.000 LB/(IN**2)
           .550
MU, FRICT =
        =
             .064 RESTITUTION
C0
C1
        ===
             .35417E-02 VERSUS
        = .47381E-04 DEFLECTION
C2
                         TIRE PROPERTIES
                       CORNERING STIFFNESS
         = -10250. LB/RAD
                                       C(5)
                                                = -10250 LB/RAD
C(1)
                                                = -10250.
         = -10250.
                                        C(6)
C(2)
                                                            .
                    . .
                                                = -10195.
                                        C(7)
C(3)
         = -10195.
                                                = -10195. ''
                   + 1
                                        C(8)
         = -10195.
C(4)
 TIRE-TERRAIN COEF AND TERRAIN ZONES
XB1' = 1.000 \text{ IN.} YB1' = 1.000 \text{ IN.} XB2' = 1.000 \text{ IN.} YB2' = 1.000 \text{ IN.}
        1.000 IN.
        .700
XMU1 =
          .700
XMU2 =
CMU = 0.
            PROGRAM CONTROL DATA
         = 0.000 SEC., BEGIN
TO
         = 2.000 ' END
TF
       = .025 '' INTEG. INTVL, TRAJ
DTTRAJ
             .001
                   INTEG.INTVL, COLL
DTCOLL =
       = .010 ' INTEG.INTVL,CPOS
= .020 ' PRINT INTERVAL
DTCOLT =
DTPRNT
             6.000 IN/SEC STOPPING TEST
UVMIN
         ==
PSIDOT = 1.000DEG/SEC STOPPING TEST
NO.OF VEHICLES = 2.
 FMOVIE = -0.(ZERO, FINAL DAMAGE TABLE TAPE
              (NON-ZERO, DAMAGE HISTORY TAPE
              (ALSO WRITTEN ON FORTRAN 2.
                (TAPE IS ALWAYS FORTRAN 1)
   VEHICLE NO. 1
                            VEHICLE NO. 2
                          1 RANGES
VEH.DAMAGE VEL
1 RANGES
VEH.DAMAGE VEL
  INDEX
           DELTA V
                           INDEX DELTA V
             MPH
                                       MPH
                                        18.59
 12FDEW2
             16.35
                            11LFEW2
  INPUT SYMBOL OF SMAC OPTION YOU WISH TO RUN
  (CHARACTER COMBINATION OF I, O, P, OR END)
?END
   STOP
```

MRU= 81.967

#

INPUT SYMBOL OF SMAC OPTION YOU WISH TO RUN (CHARACTER COMBINATION OF I, O, P, OR END)

?IOP
******** SMAC PRE-PROCESSOR ********
 SELECT PROGRAM TO BE EXECUTED - (START, SMAC)
?SMAC

KEY IN FILE NAME-SMAC FILE WILL BE BUILT IT MAY BE CHANGED BY USER FOR FUTURE SMAC SUBMITTALS (7 CHAR. OR LESS)

?FILE2

KEY IN TWO HEADING LINES

?SIMULATION MODEL OF AUTOMOBILE COLLISIONS (SMAC) ?CAL-CASE-71-55B

TYPE IN FIRST EIGHT LINES OF DATA

70.0 2.0 .025 .001 .01 .02 6.0 1.0 2.0 ?330.77 337.54 -37. 0.0 247.596 0.0 ?637. 227. 180. 0.0 440. 0.0 ?57.3 59.7 60. 34200. 9.36 0.0 97.2 -109. 38.4 ?53.4 55.6 57.7 25600. 7.98 0.0 93.4 -96.1 35.7 ?-10250. -10250. -10195. -10195. ?-10250. -10250. -10195. -10195. ?0.0 2.0 1.0 0.0

TYPE IN VEHICLE 1 WHEEL TORQUE TABLE
3 VALUES PER TIRE ARE EXPECTED (7 PER LINE)

?-1200. * ?-1200. * ?-1200. * ?-1200. *

TYPE IN NINTH LINE OF DATA

20.2 0.5 0.1 0.0

TYPE IN VEHICLE 2 WHEEL TORQUE TABLE
4 VALUES PER TIRE ARE EXPECTED (7 PER LINE)

?0.0 * ?0.0 -1000. * ?0.0 * ?0.0 -1000. *

TYPE IN TENTH LINE OF DATA

70.0 2.0 1.0 1.0

Create SMAC data input from the terminal using the SMAC data generator run this data in the SMAC program and create a plot file (option 'IOP').

TYPE IN ELEVENTH LINE OF DATA

?0.0 2.0 1.0 1.0

TYPE IN LAST FOUR LINES OF DATA
IF THE LAST DATA LINE IS NOT DESIRED,
HIT RETURN WHEN THE FOURTH PROMPT SIGN APPEARS
?1.0 1.0 1.0 1.0 0.7 0.7 0.0 0.0
?2.0 0.2 15.0 5.0 50. 55
?.06423 3.5417-3 4.7381-5

IS TIRE TRACK INFORMATION TO BE PRINTED? (YES OR NO)

?NO

INPUT FILE NAME THAT IS TO RECEIVE SMAC OUTPUT (7 CHAR. OR LESS)

?FILE4

INPUT FILE NAME THAT IS TO RECEIVE PLOT FILE (7 CHAR. OR LESS)

?FILE5

SIMULATION MODEL OF AUTOMOBILE COLLISIONS (SMAC) CAL-CASE-71-55B

INITIAL CONDITIONS

			THITTAM COMPLETED	110			
VEHI	CLE	NO. 1		VEHIC		e No. 2	
XC10'	= 3	30.770	INCHES	XC20'	==	637.000	INCHES
YC10'	= 3	37.540	INCHES	YC20'			
PSI10	= -	37.000	DEGREES	PSI20			DEGREES
PSI1D0	==	0.000	DEG/SEC	PSI2D0	=	0.000	DEG/SEC
V10	= 2	47.596	IN/SEC	U20	=	440.000	
V10	===	0.000	IN/SEC	V20	***	0.000	IN/SEC
	CAL	CULATIO	ON CONSTANTS				
DELPSI	=	2.000	DEGREES				
DELRHO			INCHES				
LAMBDA	=		LB/IN, PRESSURE ERRO				
ZETAV	===	5.000	IN/SEC, MIN. FOR FRIC	T			
		DIME	ISIONS AND INERTIAL	PROPERTIES			
A1			INCHES	A2		53.400	
B1			INCHES	B2	=	55.600	INCHES
TR1	===	60.000	INCHES	TR2	=	57.700	INCHES
I1	=	34200.	LB-SEC**2-IN	I2	22		LB-SEC**2-IN
M1	=	9.360	LB-SEC**2/IN	M2	=	7.980	LB-SEC**2/IN
PSIR10	===	0.000	DEGREES	PSIR20	=	0.000	DEGREES
XF1	===	97.200	INCHES	XF2	=	93.400	INCHES
XR1	=-1	09.000	INCHES	XR2	=	-96.100	INCHES
YS1	= ,	38.400	INCHES	YS2	=	35.700	INCHES

```
DEFORMABLE LAYER
         = 50.000 LB/(IN**2)
KV1
             50.000 LB/(IN**2)
KV2
         -
            .550
MU, FRICT =
C0 =
              .064 RESTITUTION
              .35417E-02 VERSUS
C1
         =
C2
            .47381E-04 DEFLECTION
                          TIRE PROPERTIES
                        CORNERING STIFFNESS
                                                  = -10250. LB/RAD
C(1)
                                        C(5)
         = -10250. LB/RAD
                                                  = -10250.
C(2)
         = -10250.
                                          C(6)
                                                               .
                     1 1
                                                   = -10195.
                                          C(7)
         = -10195.
C(3)
                                                   = -10195. ''
                    . .
                                          C(8)
C(4)
         = -10195.
  TIRE-TERRAIN COEF AND TERRAIN ZONES
XB1' = 1.000 \text{ IN.} YB1' = 1.000 \text{ IN.} XB2' = 1.000 \text{ IN.} YB2' = 1.000 \text{ IN.}
         1.000 IN.
        .700
XMU1 =
XMU2 =
          .700
CMU = 0.
             PROGRAM CONTROL DATA
            0.000 SEC., BEGIN
T0
TF
            2.000 '' END
                    1.1
             .025
DTTRAJ
         =
                        INTEG. INTVL, TRAJ
              .001 'INTEG.INTVL,COI
.010 'INTEG.INTVL,CPC
.020 'PRINT INTERVAL
DTCOLL =
                        INTEG. INTVL, COLL
DTCOLT =
                        INTEG.INTVL, CPOS
DTPRNT
         ===
              6.000 IN/SEC STOPPING TEST
UVMIN
PSIDOT = 1.000DEG/SEC STOPPING TEST
NO.OF VEHICLES = 2.
 FMOVIE = -0.(ZERO, FINAL DAMAGE TABLE TAPE
              (NON-ZERO, DAMAGE HISTORY TAPE
              (ALSO WRITTEN ON FORTRAN 2.
                 (TAPE IS ALWAYS FORTRAN 1)
                              VEHICLE NO. 2
    VEHICLE NO. 1
                                 1 RANGES
       1 RANGES
                           VEH.DAMAGE VEL
VEH. DAMAGE
             VEL
                            INDEX DELTA V
            DELTA V
   INDEX
                                        MPH
              MPH
                           11LFEW2
                                        18.59
  12FDEW2
              16.35
  INPUT FILE NAME THAT IS TO RECEIVE PLOTTING OUTPUT
  (7 CHAR. OR LESS)
?FILE6
  INPUT SYMBOL OF SMAC OPTION YOU WISH TO RUN
  (CHARACTER COMBINATION OF I, O, P, OR END)
?END
   STOP
MRU=
       94.639
```

INPUT SYMBOL OF SMAC OPTION YOU WISH TO RUN (CHARACTER COMBINATION OF I, O, P, OR END)

20

th

INPUT NAME OF DATA FILE TO BE RUN (7 CHAR. OR LESS)

Run the SMAC program wi data created previously (option '0').

?FILE2

INPUT FILE NAME THAT IS TO RECEIVE SMAC OUTPUT (7 CHAR. OR LESS)

?FILE4

INPUT FILE NAME THAT IS TO RECEIVE PLOT FILE (7 CHAR. OR LESS)

?FILE5

SIMULATION MODEL OF AUTOMOBILE COLLISIONS (SMAC) CAL-CASE-71-55B

INITIAL CONDITIONS

VEHI	CLE NO. 1	VEHICLE NO. 2				
XC10'	= 330.776	INCHES	XC20 *		637.000	INCHES
YC10'		INCHES	YC 20 *			
PSI10	= -37.000	DEGREES	PSI20		180.000	
PSI1D0	= 0.000	DEG/SEC	PSI2D0			DEG/SEC
U10	= 247.59	IN/SEC	U20	222	440.000	
V10			V20		0.000	
		•			-	•
	CALCULAT:	ON CONSTANTS				
DELPSI	= 2.00	DEGREES				
DELRHO		INCHES				
LAMBDA	= 15.000	LB/IN, PRESSURE ERROF	?			
ZETAV	= 5.00) IN/SEC,MIN.FOR FRICT	?			
	DIM	ENSIONS AND INERTIAL P	ROPERTIES			•
A1	= 5 7.3 0) INCHES	A2	=	53.400	INCHES
B1	= 59 .7 0) INCHES	B2	222	55.600	INCHES
TR1	= 60.000) INCHES	TR2		57.700	
I1	= 34200	LB-SEC**2-IN	I2	=	25600.	LB-SEC**2-IN
м1	= 9.360		M2	===		LB-SEC**2/IN
PSIR10	= 0.000	DEGREES	PSIR20			DEGREES
XF1	= 97.200) INCHES	XF2		93.400	
XR1	=-109.00		XR2		-96.100	
YS1) INCHES	YS2		35.700	
	DEFORMABLI	LAYER				
KV1	= 50.000) LB/(IN**2)				
KV2	= 50.00) LB/(IN**2)				
MU, FRICT	.55)				
C0		RESTITUTION				
C1	= .354	7E-02 VERSUS				

```
C2
         = .47381E-04 DEFLECTION
                         TIRE PROPERTIES
                       CORNERING STIFFNESS
                                                 = -10250. LB/RAD
                                        C(5)
         = -10250. LB/RAD
C(1)
         = -10250.
                                        C(6)
                                                 = -10250.
C(2)
                                                             . .
                    .
                                        C(7)
                                                 = -10195.
C(3)
         = -10195.
                    1.1
                                                 = -10195.
                                                             1 0
                                        C(8)
C(4)
         = -10195.
  TIRE-TERRAIN COEF AND TERRAIN ZONES
XB1' = 1.000 IN. YB1' = 1.000 IN.
                      YB2' =
XB2 =
         1.000 IN.
                               1.000 IN.
         .700
XMU1 =
XMU2 =
          .700
CMU = 0.
            PROGRAM CONTROL DATA
TO
             0.000 SEC., BEGIN
             2.000 ' END
TF
         =
             .025
DTTRAJ
                    .
                        INTEG. INTVL, TRAJ
         =
             .001
DTCOLL
                    * *
                        INTEG.INTVL, COLL
         ===
                   1 1
             .010
DTCOLT
         =
                        INTEG.INTVL, CPOS
              .020 ' PRINT INTERVAL
DTPRNT
         =
             6.000 IN/SEC STOPPING TEST
UVMIN
PSIDOT
             1.000DEG/SEC STOPPING TEST
NO.OF VEHICLES = 2.
 FMOVIE = -0. (ZERO, FINAL DAMAGE TABLE TAPE
              (NON-ZERO, DAMAGE HISTORY TAPE
              (ALSO WRITTEN ON FORTRAN 2.
                 (TAPE IS ALWAYS FORTRAN 1)
                              VEHICLE NO. 2
   VEHICLE NO. 1
                                 1 RANGES
       1 RANGES
                            VEH.DAMAGE VEL
VEH. DAMAGE
             VEL
                                     DELTA V
  INDEX
           DELTA V
                            INDEX
                                       MPH
             MPH
                                        18.59
             16.35
                            11LFEW2
 12FDEW2
 INPUT SYMBOL OF SMAC OPTION YOU WISH TO RUN
  (CHARACTER COMBINATION OF I, O, P, OR END)
?END
   STOP
```

MRU=

#

75.958

INPUT SYMBOL OF SMAC OPTION YOU WISH TO RUN (CHARACTER COMBINATION OF I, O, P, OR END)

2OP

INPUT NAME OF DATA FILE TO BE RUN (7 CHAR. OR LESS)

?FILE2

INPUT FILE NAME THAT IS TO RECEIVE SMAC OUTPUT (7 CHAR. OR LESS)

?FILE4

INPUT FILE NAME THAT IS TO RECEIVE PLOT FILE (7 CHAR. OR LESS)

?FILE5

SIMULATION MODEL OF AUTOMOBILE COLLISIONS (SMAC) CAL-CASE-71-55B

INITIAL CONDITIONS

VEHI	CLE	NO. 1		VEHI	CLE	NO. 2	
XC10'	=	330.770	INCHES	XC20'	****	637.000	INCHES
YC10*	***	337.540	INCHES	YC 20 '	===	227.000	INCHES
PSI10	=	-37.000	DEGREES	PSI20	===	180.000	DEGREES
PSI1D0	==	0.000	DEG/SEC	PSI2D0	===	0.000	DEG/SEC
U10		247.596	•	U20	=	440.000.	IN/SEC
V10		0.000	•	V20	===	0.000	IN/SEC

CALCULATION CONSTANTS

DELPSI = 2.000 DEGREES
DELRHO = .200 INCHES

LAMBDA = 15.000 LB/IN, PRESSURE ERROR ZETAV = 5.000 IN/SEC, MIN. FOR FRICT

DIMENSIONS AND INERTIAL PROPERTIES

A1	==	57.300	INCHES	A2	=	53.400	INCHES
В1	=	59.700	INCHES	B2	***	55,600	INCHES
TR1	=	60.000	INCHES	TR2		5 7.7 00	
I1	=	34200.	LB-SEC**2-IN	I2			LB-SEC**2-IN
м1	=	9.360	LB-SEC**2/IN	M2	=	7.980	LB-SEC**2/IN
PSIR10	=	0.000	DEGREES	PSIR20	=	0.000	DEGREES
XF1	=	97.200	INCHES	XF2	***	93.400	INCHES
XR1	=-	109.000	INCHES	XR2	===	-96.100	INCHES
YS1	=	38.400	INCHES	YS2	***	35.700	INCHES

DEFORMABLE LAYER

KV1 = 50.000 LB/(IN**2) KV2 = 50.000 LB/(IN**2)

MU,FRICT = .550

CO = .064 RESTITUTION

Run the SMAC program with data created previously and create a plot file (option 'OP').

```
= .35417E-02 VERSUS
C1
C2
            .47381E-04 DEFLECTION
                       TIRE PROPERTIES
                     CORNERING STIFFNESS
                                     C(5)
                                             = -10250. LB/RAD
        = -10250. LB/RAD
C(1)
                                            = -10250.
                                     C(6)
       = -10250. ''
C(2)
                                                        9 6
                                             = -10195.
                  P 1
                                     C(7)
        = -10195.
C(3)
C(4)
        = -10195.
                  ŧ ŧ
                                     C(8)
                                             = -10195.
 TIRE-TERRAIN COEF AND TERRAIN ZONES
XB1' = 1.000 IN. YB1' = 1.000 IN.
XB2' =
                     YB2' = 1.000 IN.
        1.000 IN.
       .700
XMU1 =
         .700
XMU2 =
CMU = 0.
          PROGRAM CONTROL DATA
T0
          0.000 SEC., BEGIN
          2.000 '' END
TF
           .025 '' INTEG. INTVL, TRAJ
DTTRAJ
        =
           .001 '' INTEG. INTVL, COLL
        =
DTCOLL
           .010 '' INTEG.INTVL, CPOS
DTCOLT
        ===
             .020 'PRINT INTERVAL
DTPRNT
           6.000 IN/SEC STOPPING TEST
UVMIN
PSIDOT = 1.000DEG/SEC STOPPING TEST
NO.OF VEHICLES = 2.
FMOVIE = -0. (ZERO, FINAL DAMAGE TABLE TAPE
            (NON-ZERO, DAMAGE HISTORY TAPE
            (ALSO WRITTEN ON FORTRAN 2.
               (TAPE IS ALWAYS FORTRAN 1)
                           VEHICLE NO. 2
   VEHICLE NO. 1
     1 RANGES
                           1 RANGES
                         VEH.DAMAGE VEL
VEH.DAMAGE VEL
                         INDEX DELTA V
  INDEX
          DELTA V
                                    MPH
            MPH
            16.35 11LFEW2
                                    18.59
 12FDEW2
 INPUT FILE NAME THAT IS TO RECEIVE PLOTTING OUTPUT
 (7 CHAR. OR LESS)
```

?FILE6

INPUT SYMBOL OF SMAC OPTION YOU WISH TO RUN (CHARACTER COMBINATION OF I, O, P, OR END)

?END

STOP

MRU= 89.401

INPUT SYMBOL OF SMAC OPTION YOU WISH TO RUN (CHARACTER COMBINATION OF I, O, P, OR END)

Create a plot file from plot data created previously (option 'P').

?P

INPUT NAME OF FILE TO BE USED IN PLOTTING PGM. (7 CHAR. OR LESS)

?FILE5

INPUT FILE NAME THAT IS TO RECEIVE PLOTTING OUTPUT (7 CHAR. OR LESS)

?FILE6

INPUT SYMBOL OF SMAC OPTION YOU WISH TO RUN (CHARACTER COMBINATION OF I, O, P, OR END)

?END

STOP

MRU= 15.089

#

```
#LNH FILE2
            10SIMULATION MODEL OF AUTOMOBILE COLLISIONS (SMAC)
            20CAL-CASE-71-55B
 1
                                                                     6.0
                                                                              1.0
                                                                                       2.0
                                                   .01
                                 .025
                                          .001
                                                            .02
                        2.0
            30±0.0
 2
                                                   247.596 0.0
            40±330.77
                        337.54
                                 -37.
                                          0.0
 3
                                                   440.
                                                            0.0
            50±637.
                        227.
                                 180.
                                          0.0
                                                                     97.2
                                                                              -109.
                                                                                       38.4
                                                            0.0
                                                   9.36
                                          34200.
            60±57.3
                        59.7
                                 60.
                                 57.7
                                                                     93.4
                                                                              -96.1
                                                                                       35.7
                                                   7.98
                                                            0.0.
                                          25600.
            70 \pm 53.4
                        55.6
6
7
            80-10250. -10250. -10195. -10195.
            90-10250. -10250. -10195. -10195.
   8
            100±0.0
                                  1.0
                                           0.0
                         2.0
                                          -1200.
                   -1200.
                               -1200.
            110
            120
                   -1200.
                               -1200.
                                          -1200.
                               -1200.
                                          -1200.
            130
                   -1200.
                                          -1200.
                   -1200.
                               -1200.
            140
   9
                         0.5
                                           0.0
                                  0.1
            150±0.2
                                             0.0
                                                         0.0
            160
                       0.0
                                  0.0
                                          -1000.
                                                     -1000.
            170
                       0.0
                               -1000.
                                                         0.0
                                  0.0
                                             0.0
            180
                       0.0
                               -1000.
                                          -1000.
                                                     -1000.
            190
                       0.0
  10
                         2.0
                                  1.0
                                           1.0
            200±0.0
  11
                         2.0
                                  1.0
                                           1.0
            210±0.0
  12
                                                                                0.0
                                                    0.7
                                                             0.7
                                                                       0.0
                                  1.0
                                           1.0
            220±1.0
                         1.0
  13
                                                              50.
                                                                       .55
                                                    50.
            230±2.0
                         0.2
                                  15.0
                                           5.0
 14
            240.06423
                        3.5417-34.7381-5
999
            250
            260
            #
```

Input data created with the SMAC data generating program.

9

```
#LNH FILE3
           10SIMULATION MODEL OF AUTOMOBILE COLLISIONS (SMAC)
           20GEDERA START TEST
 1
                                                      .01
                                    .025
                                                              .001
                                                                        30.
                                                                                 5.0
                                                                                          2.0
               0.0
                            4.0
                                             .001
           30
 2 3 4 5 6
           40 -100.80
                         12.00
                                   0.00
                                            0.00
                                                   480.49
                                                              0.00
                        -12.00
                                 180.00
                                            0.00
           50
               100.80
                                                   558.60
                                                              0.00
                                                                                        39.60
                 60.50
                                                    7.97
                                                              0.0
                                                                     100.50 -119.60
           60
                         63.00
                                  63.10 28600.0
                                                                     100.50 -119.60
                                                                                       39,60
           70
                 60.50
                         63.00
                                  63.10 36678.6
                                                    10.22
                                                              0.0
           80 -11572. -11572. -11113. -11113.
 7
           90 -11572. -11572. -11113. -11113.
                            .175
                   .125
                                     .01
           100
                                               0.0
                                                                           -0.00
           110
                      0.0
                                 0.0
                                                     -0.00
                                                                -0.00
                                             0.0
                                                              -392.79
                                                                         -392.79
           120
                      0.0
                                 0.0
                                             0.0
                                                   -392.79
           130
                                                     -0.00
                                                                -0.00
                                                                           -0.00
                      0.0
                                 0.0
                                             0.0
                                                                -0.00
           140
                                            0.0
                                                     -0.00
                                                                           -0.00
                      0.0
                                 0.0
  9
                   .125
                            .175
                                      .01
                                             0.0
           150
                                                                           -0.00
           160
                      0.0
                                 0.0
                                             0.0
                                                     -0.00
                                                                -0.00
                                                              -503.74
                                                                         -503.74
           170
                      0.0
                                 0.0
                                             0.0
                                                   -503.74
                                                                -0.00
                                                                           -0.00
           180
                      0.0
                                 0.0
                                             0.0
                                                     -0.00
                                                                           -0.00
           190
                      0.0
                                  0.0
                                             0.0
                                                     -0.00
                                                                 -0.00
                             .30
                                      .10
 10
                                              1.0
            200
                    0.0
                                      .10
 11
            210
                    0.0
                             .30
                                              1.0
                                                                .50
 12
                 -2400.
                           2400.
                                    2400.
           220
                                             2400.
                                                       .50
                                                                         0.0
 13
                                               5.0
                                                     50.00
                                                              50.00
                                                                        0.55
            230
                    2.0
                                    15.0
                           . 2
 14
            240 0.046061.7547-31.6711-5
1999
            250
            260
            #
```

Input data created with the START program.

_

VII. Displaying a Plot File Generated by the SMAC-PLOT Program on the IBM 370 or DAC-II System

Log on procedure is the same as that when preparing SMAC for submittal to either the IBM 370 or the DAC-II system. The user dials the phone number of a line of the appropriate speed (10 or 30 cps), listens for a beep, and types the return key once. The system responds:

MCAUTO - 11:29 DEC 14, '73 LOGON PLEASE: PASSWORD

The user enters the account number and password, The form is:

LOGON PLEASE: ACCOUNT NUMBER PASSWORD NAMEMBER

After logging on, enter via the keyboard:

#FAS

You will be prompted with * for each command as you are now under control of the FASTDRAW executive.

A. If the file has not been displayed previously, the following steps should be used.

*BUI DISPIPF FROM DEFOUTFIL

where DISPIPF is the name of a new file built by FASTDRAW for display purposes. DEFOUTFIL is the name of the file created in the earlier SMAC run on the IBM 370 or the DAC-II system.

On the IBM 370 run, this file was defined when the user responded to the prompt KEY IN FILE NAME THAT WILL RECEIVE THE OUTPUT. If the SMAC run had been submitted after correcting a file (Section H.2 of Generation of File for Display), this file was defined using DEF OUT=XXXX. If the job was submitted as described in Section II, this file was named in The DAC-II routing card.

On the DAC-II system run, this file was defined when the user responded to the prompt INPUT FILE NAME THAT IS TO RECEIVE PLOTTING OUTPUT (7 CHAR. OR LESS)

FASTDRAW will then prompt LANGUAGE:

Respond with PLOT.

An asterisk will appear (*).