The Suspension Model
2003

EDC Library Ref. No. 1088



DISCLAIMER

These materials are available in the public domain and are not copyrighted.
Engineering Dynamics Corporation (EDC) copies and distributes these materials to
provide a source of information to the accident investigation community. EDC

makes no claims as to their accuracy and assumes no liability for the contents or
use thereof.



B.9 Air Suspension Model

B.9.1 Introduction. = This section is intended to explain
the air suspension model of the Phase II1 simulation programs .
There are a number of different air suspensions on the market. The
model described here encompasses single and tandem axie designs
using either four-bar- or trailing-arm-type linkages.

The air suspension model is tonveniently divided into three
parts:

?) the mechanical linkage system
2} the air spring
3) the air delivery system

These parts of the model will be dealt with successively in the
next three sections. Sectign B.9.5 considers the interreiation-
ships between the variogus parts of the model and Section B.9.8
discusses static considerations for the model. '

B.9.2 The Mechanical Linkage System. The first linkage
system to be modeled is the tandem four-bar type as illustrated
in Figure 2.25. Dimensions relevant to the problem appear in
the figure. Free-body diagrams of each Tink, showing all dynamic
forces and moments acting on the 1inks, appear in Figure B-29,

In the free bodies of Figure B-29, the dynamic tire normal
forces (DN), viscous damping forces (FF}, the air spring forces
(FS), brake forces (FX), brake torgues (TT), longitudinal decelera-
tions (XDD), and their related D'Alembert forces (MS . XDD), are
considered known "inputs® to the 1inkage, having been calculated
~earlier in other portions of the program. A1l other forces plus
the vertica1lacce1erations (ESP) are unknown reactions to these
forces,
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The assumptions on which the Tinkage model is based are:

1) Masses or moments of inertia are significant only
with respect to vertical and Jongitudinal motion
of the axle assembly.

2) - The longitudinal acte1erations'of the unsprung
:masses are identical to that of sprung mass.

3) The mass center and axie center of each unsprung
mass are coincident.

4} The pin connection between the main suspension arm
and the axle housing lies directly below the axle
center.

5) A1l pin connections are frictionless.
§) . The air spring may transmit vertical force only.

7) Changes in geometry due to motions of the suspension
and vehicle are ignored.

| As outlined in Section B.1, the output of the suspension
model reguired by subroutine FCTY are the total vertical suspen-
sion force {TSFV), the total horizontal suspension force (TSFH),
total suspension torgue about the suspension reference point
(TSTORQ), and the vertical accelerations of the unsprung masses
(ESP{I), I =1,2). (Note that the suspension reference point is
defined as the leading axle center.) These guantities may be
expressed as:

TSFVY = SFV(1) + SFV(2) {B-175)
TSFH = SFH(1) + SFH(2) (B-176)

TSTORQ = TORQ(1) + TORQ(2) + SFV(2) - AAl (8-177)
where SFV, SFH, and TORQ are defined, respectively, as the total

- vertical axle force, total horizontal axle force, and the total
axle torque about the axle center, and the subscripts (1) and (2)
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Figure B-30. Dynamic free-bod}l’_diagram_: Axle assembly
~ of the four-har linkage air suspension.
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refer to leading and trailing axles, respectively. In the
following analysis, equations for SFV, SFH, and TORQ, as well
as ISP, will be developed. Subscripts will be dropped from all
notations since the analysis is applicable to either axle.

By definition:

SFY = TRY + RV - FS + FF (B-178)

SFH = - TRH - RH . (B=179)

TORQ = TRH - AAS - RV - AA3
- RH(AA4 - AA3 - tanAA7A) - FS - {AA2-AA3) (B-180)

Consider the free body of an entire axle assembly, Figure
8-30. Summing moments about the axle center: '

-TRH « AAS + RV - AA3 + RH(AA4 - AA3 - tanAA7A)
# FS - (AA2-AA3) + 7T = 0 (B-181)

Then from (B-180) and (3—131) '
TORG = -T7 (B-182)
and from the same free body, in the x direction:
TRH + RH + FX - MS - XDD = O (B-=183)
Combining Equation {B-179) and (B-1f7)
SFH = FX - MS - XDD (B=184)

Applying Newton's second law to the main suspension arm in
the z direction:

FS « RY = AV = 0 _ (B~-185)
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and from Equations (B-178) and (B-185)

SFV. = TRV - AV + FF (B-186)

AppWyiﬁg Newton's second law to the axle housing in the z
direction:

AV - TRV - MS - 7S - DN - FF = 0
or ‘ : (B-187)
MS + ZS = AV - TRV - DN - FF

and from Fquations (B-184)} and {B-185)

- ! i@ .
5 = _;§£§§;_2§l (B-188)

It remains to determine the forces TRV and AV. With these
two forces, Equations (B-175) through (B-180), (B-182), (B-184),
(B-188), and (B-188) represent the entire solution for the
required suspension model output variables.

Summing moments on the torque rod and setting equal to
zero leads to

TRH

TRV/tan AA7B . (B-189)}
Summing moments on the axle housing, first about the axle center
and then about the main arm pin, and setting equal to zero yields
Equations (B-130) and (B~-191), respectively.

TRH - ARS + AH « AA4 + TT = 0 | (8-190)

TRH « (AA4+AAS) + (FX = MS - XDD) - AAd + TT = 0 (B-191)
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Rearranging (B-190)

TRH = i%é . %%%-AH ' | (8-192)
substituting (B-189) and (B-192), respectively, into (8-191)
and rearranging yields:

TRV’-(FX—?E-XDD)AM.tamm-ﬁ tanAA?B

AAG + ARD AAL + AARD
{B-193)
AH = {FX - M5 - XbD) m#‘;s'm' - ml.‘_m (B=194)

Now summing moments on the main arm about the body comnection
pin:

FS . A2 - AV - AA3 + AH - AA3 - tanMATA = 0 (8-195)
substituting (B-194) and (B-195) and solving for AV
o AAZ . . . _ tanAA7A Y
AV = FS 3 + [(FX =« MS X0o) AAS - TT} KA+ ARG ‘ (B~196)

Substituting (B-193) and (B-196) into (B-186)

. AR2 ) . (AAS tanAA7A + AA4 tanAATB

. ‘ A -
¢ T (L2NAATA - LADAATD) + FF (8-197)

In summary, the outputs from the suspension mode] are
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SFV(1) + SFY(2) (a)

TSFV =

TSFH = SFH(1) + SFH(2) (b)

TSTORQ = TORQ(1) + TORQ(Z) + AAl - SFV(2) (c) (B-198)
. _ =(SFV{1) + DN(1))

s(1) s (a)

3 . ={SFV{2) + DN{2}))

where SFV(I), SFH(I), and TORQ(I) (I = 1,2) may be found from
Equations (B-197), (B-184), and (B-182), respectively.

The preceding analysis for a tandem suspension composed
of two four-bar linkage-type axles may be easily modified to
account for trailing arm linkages (see Figure 2-26) at either
or both axles,

Equation (B-198) remains applicable regardless of the
linkage arrangement. Further, it can be shown that the equations
for SFH and TORQ (Equations (B-184) and (B-182), respectively)
remain unchanged for the trailing arm linkage. Thus, to adapt
the analysis to the trajling arm arrangement, only the equation
.for SFV need be altered.

| Using the notation from Figure 2-26 and B-31 (free-body
diagram of a trailing arm axle), and the definmition of SFV:

SFY = RV - FS + FF (B-199}

Equation (B-199) is, of course, identical to Equation {B-178)
except for the omission of the vertical torgue rod force, TRV.

Summing moments about the axle center in Figure B-31
yields:
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Figure B-31. Dynanmic free-body diagram: Trailing arm
: air suspension.
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RV - AA3 + RH - AA4 + FS(AA2-AA3) - TT = 0 (8-200)

where, from the summation of horizontal forces
RH = M5 « XDD - FX (B8-201)

Combining the three preceding equations

SFY = -Fs(idZ) 4 TT* (FX-HS - XOD)AM ,

(B-202)
Thus, if a trailing arm type axle is to be used, in either

leading or trailing position, fquation (B-202) replaces Equation

(B-187) as the definition of SFV (i.e., SFV(1) for leading axle

or SFV(2) for trailing axle) in Equation (B~-138).

Finally, the mechanical Tinkage analysis can be altered for
a single-axle air suspension simply by setting all terms in
Equation (B-198) with *{2)" subscripts to zero.

B.9.3 The Air Spring. Basic to the model of the air spring,
whose description follows in this section, and to the model of the
air delivery system described in Section B.9.4, is the assumption
that the behavior of the entire air suspension system can be
described as two independent thermodynamic processes. These
processes are:

1. A constant mass, reversible polytropic (i.e.,
v = const) process which is assumed to describe
the action of the air in the spring at time (t)
over the time period (t) to (t + at) where at is
time step size used in the digital computer
program. :
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A constant temperature process assumed to describe
the effects of the various air flows in and out of
the spring during the time period (t) to (t + at).

For the sake of semantic convention in the following
discussions, the first process is attributed to the air spring;
the second process is attributed to the air delivery system.

The nomenclature used in the following discussion includes:

h:

air spring'heiéht

air spring 1éad

air spring gauge pressure
air spring absolute pressure
atmospheric pressure

air spring internal volume

the subscript O refers to the nominal
(i.e., operating point) value of the
variable, For examp]eg'go is the nominal
air spring load.

the prefix, &, refers to a variation from
the nominal value. For example,

.AL z L - Lb.

the effective air spring area with respect
to load;

Y
AL = 3P (B-203)
hxh0
effective air spring area with respect
to volume;
A : o (8-204)
hshD
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K : air spring constant pressure spring rate;

K =z .3k (B~-205)

p ah|p.
P=P,

An example of the air spring performahce data [19] published
by air spring manufacturers appears in Figure B-32. Exampie

values of AL' AV’ and Kp which derive from this data are given,

Upon examining such air spring performance data, it is evident
that the following assumptions are reasonable:

L = L(P.h) | (B-206)

and

v = V(h) : (B-207)

(Note the absence of P in Equation (B-207) implies that the
internal volume of the air spring is not significantly affected
by pressure. This, of course, is not exact.)

In addition, the statements of at least one air spring
manufacturer [19] support the assumption of:

PY = C (B-208)

where C is a constant, and suggest that

n = 1.38 (B-209)

This value of n will be assumed here.

If it is further assumed that, within the range of interest
about the operating point, linear approximations of Equations
{B-206) and {B-207) are sufficiently accurate, then Equations
(B-210) and (B-211) are applicable.
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aL = 2L . ap + 3L . sh (B-210)
0 0
AY = g% . Ah . (B"‘Z‘” )
hhy

Substituting Equations (B-203)'and (B-205) into (B-210) and
Equation (B-202) into (B-211) yields: '

QL = AL AP - Kp ah (B-212}

and

AY = AV ah (B-213)

Substituting nominal values of pressure and volume and a value
of 1.38 for n into Equation (B-208):

38

= 1.
¢ = (PO + Pat)‘l0 (B-214)

Using this value for C and solving Equation (B~-208) for P

1.38
(Pq * Pael¥y

P = T3 " Pat (8-215)
and by the definition of AP
(PO * pat)vﬂli 38 216
S I “Pat - Fo (8-216)

From the definition of AV and Equation (B-213)
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AV = ¥ - VO = AV » ah (a)

or (B-217)

v = Vo, +A

0 y - &h {b)

Substituting Equation (B-217b) into (B-215) yields:

(b s p gy
- 0 at’ 0 :
sP = 5= -~ Pat " Fo
[Vy + Ay - 8h]"

(B-218)

fquations (B-212), (B-213}, and (B-218) constitute a mathe-
matical representation of the proposed air spring model. The
input to the model is ah, the change in air spring height, and
+he output is aL, the change in air spring vertical force. A
graphical representation of this model appears in Figure B-32.
Figure B-32 gives an exampie of the air spring model performance
characteristics of an example air spring.*

In the figure, the lines of constant pressure and the plot
marked "Vol." Fepwesent'pub1ished data. The various straight
lines are the model's approximation of this data according to
the values of Av, AL, and Kp obtained for t?e3grbitrar11y chogen
operating point. The two plots marked "Pav : = Constant" are
the results of applying the empirical data and the model charac-
teristics, respectively, to this equation {(i.e., each of these
plots represents a solution to the simultaneous equations:

v = V¥(h) : (a)
pavma « Comstant (b)  (B-219)
L= L(P) (c)

«Firestone Airide ® , MNo. 21. [18].
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The lighter plot results when Equations (a) and (cf are solved
using actual air spring data; the darker 1ine comes from
employing the air spring model to solve Equations (a) and (c).

Note that in Figure B-32, the values of AV,IAL, and K were
determined by designating the operating point to be identical
to the static condition. In certain situations, improved model
behavior may be obtained by a slight variation of this procedure.
For example, consider the case when this spring is being used on
the rear of a straight truck being studied under braking only.
Assuming that the operating point represents the static loading
condition, it would generally be expected that loads on the |
spring would always be less than or equal to the nominal load and
spring height'wnuid be greater or equal to nominal height. Con-
sequently, the model would operate only to the left of and below
the operating point. By choosing AV to more nearly %epresent the
slope of the "Vol." plot in this region, significant improvement
in model performance in the same region can be gained. {See

Figure B-33.)

Similar adjustment of AL to more nearly represent the verti-
cal spacing of the constant pressure lines in the region of
interest will also improve performance. For the example spring
considered here, Kp appears to be near optimum as shown. In
genera], the goa} when choosing the va]ugs of AV' AL, and Kp is
to obtain the most acturate linear approximations of the spring
data (both "Vol." and constant pressure b?ots) as .possible within
the expected region of operation.

B.9.4 The Air Delivery System. The discussion of the
previous section assumed no air flow into or out of the air
spring. This, of course, is not the case. Figure B-34 diagrams
the plumbing system of a typical tandem air suspension.* As

*Note that height regulating valves are indicated since this
model is intended for use as a full suspensidn, not as tag
axles.
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Figure B-33. Improved model performance within a
limited operating range.
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shown, air may enter or exit an air spring via the height
requlator or through its interconnections with the other spring
on the same side of the vehiclie.

Air flow through the height reguiatérs is typically oquite
slow, but may have an effect on the pitch attitude of the thic]e
near the end of a nhigh-speed stop. More importantly, the inter-
connection between the two axles of a tandem may have a signi-
ficant load leveling effect.

The same model is proposed for each of the several flow
paths (to be enumerated later). Basic to this model are the .
assumptions that {1) during a single time step {at = 0.0025 sec)
temperature in the air spring is constant, and (2) the mass flow
of air in a given flow path may be described by:

-gwti = . ' - -~
(dt)g Ci (Pei P) (B-220)
where
dM. . . : . . .
(3%01. the mass rate of air flow into {positive)
the spring via the particular flow path
P: the gauge air pressure in the spring
Pe : the gauge air pressure at the opposite end

of flow path i (supply pressure, atmospheric
pressure, or pressure in the other spring)

C%: a constant property of the flow path i.

Then for either air spring, assuming the ideal gas law

(P+P )V = M-R-T (B-221)

where
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P is atmospheric pressure
R is the gas constant
Yy is the air spring volume
T 4s the absolute temperature in the spring

M 1is the air mass in the air spring.

Then by differentiating

am _ d [P P :?: oM |
S [___n_:uf__} - (Ef)i (B-222)

where n is the number of flow paths.

Since R and T are constants, Equation (B-222) may be
written

M 1 dv ., dp
> @) - [(pep FE+v Z (8-223)

n
T Iv [E C'(Pe - P) - (P + Pat)-g-%] (B-224)

i=] i

cy = c% -;R - T (B-225)
The time step at which the HSRI simulation program proceeds
(at = 0.0025 sec) is extremely small relative to the expected
dynamic behavior of the air delivery system. Consequently, the
simplest form of digital integration will be adequate for the
solution of Equation (B-224). Therefore, from Equation (B-224)
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1]
1 ' dv \
AP, = T [E: C AP - P,,) - (P +P)(—-) ]A‘t
D VAV g ‘e, AV AY at’ \dt AV

H

where the subscript (AV) indicates an average vaiue over the
time step and the subscript (D) indicates "of the delivery system.”

. . dv
Determination of the values of VAV’ Pays and (EE)AV to be
substituted into the right-hand side of Equation (E-226) will be
discussed in Section B.9.5. Suffice to say they will be
approximations to their average values over the time step.

Figure B-28 illustrates all the flow paths available in the
tandem air suspension model. Ag shown in the figure, there is an
input and exhaust coefficient plus a switching mechanism asso-
ciated with the air snring'of each axle. Either of these
regulators may be removed from the model by setting the appro-
priate flow coefficients to zero. A flow coefficient is also
available to describe flow between the axles. Associated with

each switching mechanism is a time lao as described in Section
2.1.8.

The details of the interrelationship between the air spring
and air delivery system models will be covered in the following
section. In general, the value of APD qetermined by this air
delivery model will be used as a modifier to the value of AP
associated with the air spring model. (See Eguation (B-217).)

B.9.5 The Complete Model. In this section, the inter-
relationships between the three portions of the air suspension
mode]l will be described. A conceptual fiow diagram of the mode]
appears in Figure 8~-35. It may be helpful in understanding the
material in-this section to refer to this figure. Initially, the
air spring and air delivery system models will be combined to
form a total air system model. To compliete the model, air and
mechanical systems will then be combined.
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To this point, the air system has been considered as two
separate systems, the air spring and the air delivery system.
Important to the interaction of these systems is the fact that,
in general terms, the dynamic response of the air delivery system
can be expected to be very much slower than that of the air
spring-tire spring-unsprung mass system. (Indeed, it is this
difference in response which has allowed the separation of the
spring and delivery system.) Since this is the case, it can be
expected that over the short time span of a single integration
time step, the total change in air pressure in the air spring
(APT) will be dominated by the effect of the air spring as indi-
cated by Equation (B-217). {aP as calculated from Equation {B-217)
will be designated APS, i.e., aP of the spring model, in this
section.) By comparison, APD, the change in pressure due to the
delivery system, will be small for any given time step. The more
important effect of AP, will be its accumulative effect over a
longer period of time.

- Now defining,

Pt: ajr sprina pressure at the beginning of a
time step

PAV: average air Spring pressure during the

time step.
Then assuming the total air spring pressure change may be written
APy = AP+ APD (B-ZZ?)
it follows that

PAV = Pt + APT/2 = Pt + —— | (B-228)

But from the preceding discussion
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APD << APS (B-229)

and therefore it may be assumed

Pay = Pr*+ 8Pg/2 (B-230)

The average pressure, PAV; of Equation (B=-23) is then the
value to be used in the right-hand side of Equation (B-226) to
calculate &Pp. '

In addition to PAV' the right-hand side of Equation (B~226)
also requires values of VAV and (dV/dt)Av. These values become
available simply by performing the digital integration to determine
the new positions of the sprung and unsprung masses (via HPCG)
before solving Equation {B-226). With this done, the mass posi-
tions, and consequently the spring heights, are known both at
the beginning and end of the particular time step. Then, ah is
also known for that time step, and from Equation (3-213) avy is
known. By definition

(dV/dt)Av = aV/at (B-231)

and

Vay = Yy + V2 (B-232)

where V. is the volume at the beginning of the time step.

At this point, sufficient information is available to
calculate the total pressure change, 4Py, which, with ah, is
substituted into Equation (B-212) (replace aP with APT) to
obtain the change in spring force, aL. Note that Equation (B-212)
was derived independently of the assumed equation of operation

(Pavi'38 = Const.) and is valid regardless of the source of AP or
aAh.
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The final step “in the operation of the air system model is
an adjustment of the "constant"” in the equation.

PaVT‘Bs = constant {B-233)

Combining Equation {B-233) and (B-214) yields

1.38 1.38
PV (P_O + pat)vo (B~234)

Note that the basic assumptions, given in the opening
.remarks of Section B.9.3, states that Equation (B-234) holds
over a8 single integration time step. However, due to the action
of the air delivery system, Po and VO must be updated between
integration steps. As the solution according to the model

progresses through a time step, APS is first found according

to an equation derived from Equation {B-233). Next, this
pressure change is altered by the amount, APD, and, thus, is no
longer compatible with Equation (B-233). Conseguently, to pre-
pare the model for solution in the next time step the values of
PO and VO must be updated. That is,

PO = P +APT (a)
(B-235)

¥ = V. + aV {b)
t+st t

A more graphical representation of this operation appears
in Figure B-36. The initial condition of the air spring mode]
- is represented by points A and A'. The value ah is determined
by (1) integration of the -dynamic variables to cbtain 7SP and
(2) the geometry of the mechanical linkage. APS is determined
by following the “operating line" (Pavj'38 = C1) to point B
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while aV is determined by following the "Vol." line to B'. &Py

ig then calculated and the final condition of the air spring is
determined by moving from point B to point C, a distance of APD
along a line of constant h. (Constant h because it can change

nc more than ah.) The condition of the air spring no longer
agrees with the original operating Tine. Consequently, the values
 of Po'and VO are updated to pressure and volume of points C and
C', respectively (he and LU are similarly updated), and a new
operating line.is established according to

1.38 _
PaV C2 (B-236)
where

k2

= 1.
C2 = (PO + Pat)\'0 (B-237)

using the updated values of P0 and VO'

This completes the operation of the air system model. It
remains only to relate the air spring load, L, and height, h,
to the mechanical linkage model. Designating hi a.snd'l.,i as the
initial (static) values of h and L, then from the geometry and
notation of Figure B-28

h~h, = AA2/AA3 ISP {B-238)

and

FS = L - !..,i (B-239)

"Equations (B-238) and (B-239) compiete the proposed model
of the air suspension system. Equation (B-238) is used to compute
ah for input to the air system model. Equation (B-239) is used
to compute the dynamic spring force needed by FCT to compute the
derivatives for the next integration step. |
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B.9.6 Static Considerations. The preceding sections
have described the various portions of the dynamic air suspen-
sion model. It remains to describe the calculations which
determine the static normal tire loads, air spring load and air
spring pressure.

Using the definitions given in Section B.7 and rigid body

analysis, applied to the static free-body diagram of Figure B-37,
it can be shown that

STORQ

= SRATIO - SSFV + SCONST (B-240)
SSFV = WS1 + WS2 - NS1 - NS2 (8-241)
STORG = (WS2-NS2)AAl | | (8-242)

where WS1 and WS2 are the leading and trailing unsprung
weights, respectively, and NS1 and NS2 are the static normal

tire loads at the leading and trailing axles, respectively.
Combining these three equations leads to:

NST = WS1 + SSFV [§5§§¥9 -'ﬂ +-§E%%¥1 (B-243)
NS2 = WS1 + WS2 - NS1 - SSFV (B-244)

The values of SRATIO and SCONST are determined in two
different ways, depending on whether the tandem axles are inde-
pendent or dependent. If an air line interconnection exists
between the air springs of the two axles (i.e., the input parameter
CINTR is non-zero), the axles are "dependent” by virtue of the
fact that the static air spring pressure at the two axles is
jdentical. In this case, it can be shown that
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SRATIO = A, ., - AA2(1)/AA3(1) + A, . - AA2(2)/AA3(2) (B-245)

L L2

and

1]

SCONST (LOT - AA2(1)/AA3(1) + Lgp * AAZ(2) /AA3(2)

= SRATIO - Lgo ° AAY . AAZ2(2)/AA3(2) (B-246)

If the tandem axles are independent {CINTR = 0), then the
static condition of the axles is indeterminate. In this case,
the user must input the parameter, PRCTN1, which is the percentage
of total tire normal load carried at the leading axle. In this
case, it can be shown that

SRATIO = AAT{100-PRCTN1)/100 - (B-247)
SCONST = -SRATIO- WS2 -To-ggg"t%(wswwsz). (B-248)

For either leading or trailing axles, the static air spring
load (SFS) and pressure (SP) can be shown to be

SFS = (NS - WS) % (B-249)

SL - LO

SPp = ——AL—— + PU (B~250)

where the "1" and "2" designations have been dropped since
these equations are applicable to either axle.

5—134



