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SOME RECENT INVESTIGATIONS INTC DYNAMICS
AND FRICTIONAL BEHAVIOR OF PNEUMATIC TIRES

H. B. PACEJKA

Delft University of Technology, The Netherlands

ABSTRACT

A concise review of dynamic tire response to both in-plane and out-of-plane wheel
motions is followed by discussions on special subjects. First, the possible self-excited
-plane motion of a wheel of which the axle is suspended with respect to the
steady-moving car body is discussed. The influence of several parameters such as the
rate of change of effective rolling radius with tire deflection, suspension angle, and
tire torsional and slip stiffness is indicated. Second, the influence of tire inertia upon
out-of-plane tire performance is elucidated on the hasis of theoretical results. The
experimentally observed considerable reduction of the first natural frequency of the
out-of-plane motion of the tire about a diameter, due to wheel rotational speed, is
analyzed. The last portion deals with a theoretical explanation of the ereation of a
loop in the quasi steady-state eornering force characteristic which appeared to oecur
on wel slippery roads with tires exhibiting certain wear patteins.

INTRODUCTION

Tire behavior may be subdivided into in-plane (symmetrical) and out-of-plane
{anti-symmetrical) performance. Due to the symmetrical structure of the tire-wheel
system, interaction between in-plane and out-of-plane motions may be neglected
when these motions remain small. Separate treatment of both medes of motion
becomes possible in that case.

At large deflections, interaction will occur. For instanee, large amplitudes of the.
vertical motion of the wheel axle wiil considerably influence the average cornering
stiffness of the tire (1). At large slip angles, the tire radial spring rate and deflection
change. In this article these interaction effects will not be eonsidered.
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In-plane dynamic behavior of the tire-wheel system has recently become more
important due to increased interest into dynamic properties of suspension-steer
systems. It plays an important role in the forced excitation of steering vibrations
caused by tire non-uniformity, wheel imbalance, and road unevenness.

Tire out-of-plane dynamies is of crucial importance in the same problem of steering
vibrations or wheel-shimmy. Anti-symmetric tire properties determine the degree of
self-excitation or negative damping about the kingpin,

In the discussion of problems which are related to the azbove mentioned areas,
dynamic tire properties will be assumed to be lincar. Material damping will be
neglected. The last problem to be discussed is not of a dynamic nature, but is
associated with the slow cyclic slip angle variation. Especially large slip angle
amplitudes are of interest, as the frictional behavior is found to he responsible for the
unusuat vaiiation of shear force vs. stip angle. This problem is essentially non-linear,

IN-PLANE DYNAMIC TIRE RESPONSE TO VERTICAL
AND LONGITUDINAL AXLE MOTIONS

The discussion will be restricted to a uniform lire, rolling over a perfecily flat road,
Smalt motions are considered in order to limit the analysis to linear response. We refer
to {1) for a more complete treatment of the subject matter.

The iire model to be considered is depicted in Fig. 1. The model embodies the
capability of the tire to distort in the radial and the tangential directions. The elastic
tread elements enable the tire model to exhibit a deformation slip in the longitudinal
direction, When the tire is distorted tangentially with respect to the wheel-rim due to
a longitudinal force Fy, a large part of the tire is not deformed or is at least much less
deformed than the lower portion of the tire near the contact zone. This is true when
the frequency of excitation is much less than the lowest frequency of the tread band
in-plane vibration, :

The angular vibration of the wheel plus the effective (upper) portion of the tire
‘mass, with respect to the footprint portion of the tread band, shows a refatively fow
natural frequency and plays an important role in our analysis.

Another tire property which is essential in the interaction between longitudinal and
vertical motions is the variation of the effective rolling radius as a function of vertical
tire deflection. A well known theory states that the effective roiling radius differs
from the free outer radius because of the tangential compression of the tread band
due to radial tire deflection.

When the rolling resistance is neglected, the following equations govern the in-plane
response of longitudinal (Fy) and vertical (F,) force to longitudinal (x) and vertical
{z) axle displacements.

TIRE DYNAMICS AN

Fig. 1. In-plane

The forces may b

where

where W is the loar
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center of rotation

at free rolling (Vpx’"Q)

Fig. 1. In-plane tire model showing capabilily of carcass distortion and tongitudinal stip.

The forces may be divided into a constant (average) and a variable part:
Fy=Fyo + Fy, Fp=Fu+F,
where (1)
Fxo =0, Fuo=-W,

where W is the load and the index o denotes the original situation or reference value.
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The longitudinal force is 4 result o

f the longitudinal slip of a point P, located a
distance 78 below road level (Fig, 1) w

hich is the center of rotation at free rolling,
Fa = G (Vpx/ V=Gl ke + (2 + 9y 5/V}

where C denotes the longitudinai slip stiffness, Vpx the speed of point P, V the

speed of travel, £ the rotational wheel speed, ¢ the torsion angle of the lower tread
band portion with respect to the

longitudinat creep or shp at road |

(2)

evel is defined a5

K Voo /V
where Vo denotes the longitudinal
contact center. We have:

(3)
slip speed at road level (Fig. 1) at point C, the

ch:V"F“)im{rmﬁ)(\Q-f»q‘b), (4

At a particular instant, points
Imaginary body which js deflecte
Under steady state conditior
body. It m

P and C may be considered to he
d over an angle ¢ with respect to the wheel-body,

13, these points m ay be thought to be fixed to the wheel
ay be noted that at free rolling (Fy = 0) and

attached to an

K= Ko = =7 Borgg )
with an effective rolling radius

oo = VI =1~ (1) 8, .
Analogous to (1) we define:

(6)

KSKo i, 220 +Q, =5, 43 .

From (6} it follows that the effective roll
rate determined by the factor (1 — n). If

hardly change with deflection. Thig
tires may h

ing radius changes with tire deflection at a
7 is elose fo uni ty, the effective radiys will
is the case with radial steel be
ave 0 values of the order of 0.5. When § is ne
the relations are kept lincar in the vari
expression for Fy

tted tires, Bias-ply
gleeted with respeet to ¢ and
able quantities, we ohtuin the following

FX:CK{E+n§/r+§(§§+¢)60/V} ' 7)
=Cre {(—% + e+ rg) / Ve (1—n) 3/r } .

The foree may also be expressed in term

the longitudinag stiffness of the
elements), we obtain:

s of the torsion angle ¢. With C

x dcnoléng
standing tire (not Including the

stiffriess of fread

Fy=—Cyro. {8)
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The relation of Fy to the rotational acceleration of the wheel and effcetive tire
mass {total polar moment of inertia: ly) reads:

Fy=-1,0. {9

With the aid of the faregoing equations, we obtain the following differential

equation for Fy as a response to the axle motions, x and z (=8 ):

12 Ve g2 . V.

e B e e e T e I

R P, X - (1-m7) -z 16y
The amplitude ratios of output Fy and inputs x and z as a function of excita-

tion frequency  when the natural frequency wg, is taken to be Who *

Y (Cxr2/1y) become:

. ) w2 (11}
o] = TG et T (VO O o2 |
Cox (1 =m) (V/n)w (12)

P a(w) | = V (@20 — w2)Z + (VC,/C)2 w2 -

Fig. 2 shows the above relations in graphical form for the following parameter
values:

Iy = 0.6 kgm2, Cx =5 x 105 N/m, r = 0.32 m,

(13)
7= 2/3, Cx = 4000 N, wgo = 927 rad/s.

At low values of the frequency of excitation, w, the response of the amplitude of
Py to x varies approximately quadratically with w and, therefore, will become
important in the higher frequency range. This is in contrast to the response 1o z which

varies approximately linearly with w near the origin as follows:

Frp (@) | wao= (1= n)ly Vohi3 (14)

indicating the importance of speed, rotating mass and the factor (1 — n). The
maximum of IFXin is achteved at the natural frequency wgo. The maximum value
turns oul to be independent of speed V. Here, the influence of the longitudinal slip
stiffness C,, is greatest (Tig. 2).

Experiments with full scale tires confirm the trend predicted in Fig, 2 of the tire
response fo vertical axle motions.

The response of the verlical force, F,, to the axle motions x and z is treated in a
relatively simple manner by neglecting possible dynamic influences. The transfer
functions then will read: -

Fox=0,F, . =-C,. (15)
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0 | n¢0:4.6H2 Ch—

Fig. 2. Amplitude response of fongitudinal farce, F

x, to longitudinal axle moticns, x, (thin
ourves) and to vertical axle motions, z, (thick curves). The

parameter is the speed of travel, V.

SELF-EXCITED WHEEL BOUNCE

The wheel-suspension system to be considered i depicted in Fig, 3. The
angle a gives rise to a constraint relation between vertic
molions:

suspension
al and longitudinal axle

X=ztlanea.

(16)
This constraint is necessary for the unstable motion to arise. The subsequent
analysis makes use of the tire model discussed in the previous seclion.

The self-excited osciltation has been demonstrated in Professor S.K. Clark’s
laboratory at the University of Michigan. The phenomenon oceurred with
model tire of bias-ply eonstruction rolling over a rotating drum. The
truiling arm was located at yoad |
range of speed.

a small
pivot of the
evel and the self-excitation showed up only at one

TIRE DYNAMICE

Fig. 3.3
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Fig. 3. Wheel-suspension system showing inclined wheel-axle guidance (angle ).

—

xle motions, x, (thin

ed of travel, V. The vertical motion of the transtating mass, m, is governed by the foilowing
equation
m¥z+kz = Fy tana + F, (17)

with effective mass

3. The suspension

g =— = =

: m* = m/cos? a. (18)
tongitudinal axle
For relatively small @, this effective mass may be considered as constant. 3
(16) In combination with Eqs. (10), (I5) and (16), the motion is fully described. We
. will introduce a number of dimensionless quantities:
. The subsequent 9 .
1. Cx Wdao Cr
¢ z—'cma T= 2 3 = “6 ’
ssor S.K. Clark’s & Weyg X
rred with a small .
The pivot of the gz, V= M , Wo T <o (19
:d up only at one 2m% iy g Iz “rzo
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in which appear the natural frequencies of the undamped transtation and rotation:

- Cxr2
w?"zo ""‘ia w ¢0 - IX (20)
¥
The characteristic equation reads (p =& + iog ):
P+ (Viy+28p3 + (1 + 7+ 28V/y + 0 tan2a)p?2 + 1)

{267+ Vh”r(lw nyo v mna}“};"#f:()
The conditions for stahility, according to Routh-Hurwitz, reduce for the undamped
system (§ = o} to the following inequality:
1 7-1

—(1— - g 2
0=y (1 7?)76+tana+0iana){] (22)

In case Eqn. 22 is not satisfied, oscillatory instability will arise. Usually, 0 (5 (1
and 7 ) 1. For negative a, the sysiem becomes unstable at sufficientfy large values of
(1 —nyr. Positive a, however, does not ensure stability. Large values of ¥ may

l!‘tan X

= 2\&/@

A STABLE
2

VL
!

Fig. 4. Boundarics of unstable vertical wheel motions of system shown in Fig. 3.
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sn and rotation:

(20)

(21)
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destablize the system. A tire with 7 sufficiently close to unity will not be capable of
showing self-cxeited wheel bounce.

Fig. 4 presents the stability boundaries in the parameter plane with ordinate tan g
and abscissa {1 — %)y. The calculations have been carried out for the following
parameter values:

¢6=25 and r=16 {23)
The boundaries for the case with damping (damping ratio 8 = 0.02 and 0.2) hold
forn = 2/3 and V=1 (withr =~ 0.3 m and Wye = 207 rad/s we get V=20 m/s = 72

km/h).

The two separated unstable areas appear to represent self-excited vibrations of
different modes. For positive a, the frequency of the vibration on the verge of
instability (o indicated in the figure) lurns out to be of the order of the natural
frequency of the torsional deflection, Waa- For negative a, the frequency is closer 1o
the much lower natural frequency associated with the radial deflection, w,,.

It may be noted, that a tire with the parameters specified in (13) which has a rather
low value of C, and for which (I — nyy = 1/6, needs only little damping to avoid
instability. The model aireraft tire which experienced instability had a bias-ply carcass
(small 1) and showed relatively stiff continuous ribs (large C,).

OUT-OF-PLANE DYNAMIC TIRE RESPONSE TO
LATERAL AND STEER MOTIONS OF THE WHEEL AXLE

The antisymmetrical response of pneumatic tires has been a subject of study during
the last three decades, Relatively recently, the mass of the tire has been inefuded in
the analysis. This extension of the well-known kinematic theories (2) is of importance,
not so much to explain the phenomenon of self-excited shimmy vibrations, but to
achieve a far better quantitative description of real tire behavior.

The theory of the dynamic antisymmetric response of a stretched string type tire
model with mass is of considerable complexity (3). An approximate dynamic theory
(4) developed recently as an extension to an earlier and simpler approximation of the
dynamic influence (1), is of greater practical use. The agrcement with experimental
resulis turns out to be good (4).

The essential approximation intreduced in this theory is to neglect those harmonic
components of the inertial force distribution along the tire circumference that have
wavelengths shorter than the circumference. This means, that the clastic deformation
associated with this lateral inertial force distribution varies according to a plane. The
position of this plane with respect to the wheel center plane is defined by the lateral
and (two) angular displacements (;’?ﬁ’ at)-
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Fig. 5. Zero and first order harmonics of tire lateral distortion (= average plane distortion).

Besides these inertial forces, we have the external ground foree Fy and moment M;,
(see Fig. 5) which cause the tire to distort. The zero order plus first harmonic of this
“stalie™ distortion corresponding to an inelined plane is defined by the displacements
(Vis Yoo i) Higher harmonics do not produce a resulting force or moment acting on
the wheel rim,

With Gy, C,, €y denoting the stiffness of tire tread band with respect to wheel-rim
and 1 the tire radius, the following relations apply:

Y[:FY/CY’ ?"Lz'—Fyr’}C'p atzMé/Cw (24)
The suza of dynamic and static deformations is denoted by (Ye, ve, Ye).
VESVURYL i Th R, sy o+ (25)

The input motion of the wheel-plane is defined by (y, v, ¥). Camber angle 7 will
be kept zero in our analysis. The input motion added to the total deformation of the

TIRE DYNAMIC
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tire (yi, 7t, Y1) yields the total displacement of the tire-plane with respect to a spatial
axes system. These displacements produce the inertial forces mentioned above.

With me, I and Lip denoting effective tire inertia parameters and £ the speed of
revolution of the wheel, we obtain for the dynamic deformations:

Vi == me (F +¥) /Gy,
Fo=—{Tiie v Tep 2 (0 + P | /C,, (26)

P T+ )~ Tp @50 HCy o

The ground force and moment produce static deformations on top of these
dynamie deformations, The generation of Fy and My, is considered to be the result of
an effective input motion which is formed by the actual wheel-plane motion plus the
dynamic deformation. By taking this effective input motion as an input to the
massless kinematic theory, the approximate response of force and moment is
obtained.

Instead of taking the molion of the effective wheel-plane, we may suffice with the
motion of the effective line of intersection with the road plane, {(cf. Fig. 6). Its
location is defined by:

Ve Y +Vi—1rt, Ve =¥+ ¥t o (27)

contact line

effective input
actual inpu
=wheel plane)

Fig. 6. Actual and effective input motion (= position of line of intersection of (effective) wheel
plane and road plane).
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We shall employ the excellent approximation of the theory of the massless
string-type tire model due to von Schlippe and deseribed in (I, 2, 3). We introduce
the following quantities: 2a, the contact length between tire and road; o, the so-called
relaxation length; and Cr and Car, the cornering and aligning stif fnesses, respectively,
The frequency response functions can be written in vectorial form as a function of
frequency

Cr | 1+e—2ic a/V
(Fyye: Fy, Ve)““—‘{( Lo)y+ 1/2 _—?__BTM___(LG+3)}
Ca (28)
1 2iesalV
(“/E? WYer NEL wm)—“—{(o a)"sm 1/21+ew /V (10+a)}

For practical purposes, simpler expressions may be used (3,4).

A tire which shows a finite length and width of the contact area will also generate
fongitudinal forces. These forces form a couple M¥, The sum of M; and M¥ give the
total moment My. According to a theory given in (1, 3), the frequency response
function for M¥ reads:

] —e~2iw a/V

1% .. kE
My MEg o) =~ 1= =i (0,1 (29)

with k% representing a lre constant.

For applications in vibratory problems associated with wheel-suspension-steer
systems, it is of grealer interest to know the response of force and moment acting on
the assumedly vigid wheel with tire mass included. The cquivalent fo;ce and moment
under this condmon are obtained as follows:

Fy eq ~ Fy - mi:?;t

. (30)
'MZ eq ~ M;‘ + NI;J{ - ftlp t + Itp Q ’;t

This result should correspond to the foree and moment measured in the wheel hub,
Fy hubp and M, ngp, alter these have been corrected for the inertial foree and
moment acting on the assumedly rigid wheel plus tire. With inertia parameters of
wheel plus tire we find:

Fy eq = Fy hub + myt¥

: @31
M, eq ™ Mz hup e o

For the following set of parameter values measured on a radial ply steel-belted tire,
a=0003m,0o=0377m,r=0.322 m, Cp = 49,000 N, Cy = 1400 Nm, x* = 104
Nm2, C, =C, = 18,100 Nm, Cy = 360,000 N/m, m; = 5.7 kg (total mass: 8.5 kg), It

I

= 1/2 Jiy = 0.295 kgm?, The amplitude and phase of the equivalent moment as a
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response to steer angle have been computed and are shown in Fig. 7a as a function of
excitation frequency n = «/2n. Experimentally obtained data up to a maximum of 8
Hz have been added. The phase lag occurring in the lower frequency range is
responsible for the creation of self-exciied wheel shimmy. The influence of iire mass
is evident. Without tire mass, the same response would occur at equal wavelengths, A
= V/n, irrespeetive of the value of the speed of travel V.

The waveclength remains constant when the motion is exeited by say a wheel
imbalance (© = w, A = Zmr). The corresponding response is shown in Fig. 7b,

The resonance-frequencies, which at speeds close to zero approach a value
somewhat larger than the natural frequency of the free non-rotating tire, ny,, appear
to separate ai increasing speed. Vibration experiments performed on a free tire (not
confacting the road) for the purpose of obtaining the values of certain tire
paramelers, gave a clear indication that a considerahle reduction of the resonance-
frequency may arise when the wheel spins. The next section gives a brief analysis of
this phenomenon.

lM‘Zeq.LP/CMI experiments
40

<

D - B n

80%

0
l PHASE LAG

Fig. 7a. Amplitude and phase response of aligning torque te steer angle as a function of
frequency of excitation. Parameter is speed of travel, V. Experimental resuilts are given up to a
frequency of 8 Ha.
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Fig. 7h. Amplitude and phase response as a function of frequency (the frequency heing that of
wheel revolution),

REDUCTION OF NATURAL FREQUENCY DUE TO WHEEL ROTATION

The response of 4 free rotating tire that is subjected to vibrations of the
wheel-plane is, of course, governed by the general equations presented in the
preceding section. The difference and considerable simplification in the analysis for
the free rotating tire is the absence of ground force and moment. As a resuli of this,
the static deformations vanish, and the last two equations of {26) become;

I+ Tep Q (6 + ) + Cymy = 0,
I (4 + k.b.t)—rtp Qe+ Cyde=0 o

The free vibration of the tread band with respect to the rotating wheel-rim (¢ = 0)
shows two natural frequencies, w,, which are the roois of the frequency equation:

) (@ ) e o
Woo e Weo Wag

Woo =@yoo = Y C /L = iy 7T (37)

represents the natural frequency of the norn-rotating tire (Q = o). It can be shown that
with increasing £ the natural frequencies separate more and more from the value

(35)

where
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lwoo. The lower natural frequency, which is the more important one, appears to he
reduced for increasing values of £ (Fig. 8).
T o
W !
/
50 |
g'—ﬁ'—“"“*-nf‘r%—%———h%% I I,
o0 50 i
100 i
— |
———— f
quency (the fy !
¥ (the imqucncy heing that of |
TO WHEEL RoTATIonN |
. P
. i
h}ecied‘ Lo vibrations of the 0 1 2 3 *
figfl'mhons Presented 5n g, i Q/(JJOO
Wwihication . . : . . . .
é mo; 01% in the analysis for : Fig. 8. Natural frequencies, wo and w9, as a function of retational speed, 2, for a free tire
o Ifncni. As a result of thjg1 : (not contacting the road). Camber and steer motions of the tire with respect Lo the rim are
15 ol (26) become: i comsidered, The point where 2 reaches the value of wg, indicates the resonance frequency found
. through excitation by wheel imbalance.
0, : y

. 35y |

" (35) |

e rotating wheel.ri When an imbalance weight excites the vibration, resonance will occur at a 0

“the frequene L m _(V,} =0 frequency equal to the frequency of wheel revolution, w, = Q. In this particular case - ik
_ ¥ equation: with the aid of this equality, the only real root of (36) becomes: '

2 f
— + 1 = H
) 0 (36) . L i/l
. !{ Wo = Wao 1 — (Itp/]t)2 . (38)
|

SR e e o e

T For the case where the effective polar moment of inertia Iip = 2 1y, expression (38)

(37)

reduces to

= o). It can- be shown tha Wo 0.6 w4g- (39)
and more from the value
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This considerable reduction of around 40% is in cxcellent agreement with
experimental findings. For a radjal steel-belted tire, a reduction from about 40 Hz to
ahout 25 Hz has heen found.

From the equations of motion (35), it can be deduced that at £ = w,, the
deformation angle, v, lags 906 degrees behind the angle Y and 180 degrees behind the
excitation angle, . This agrees with experimental evidence. At Ip = 2 I, the
amplitudes of ¢ and ¢ are equal to each other. The 60 degree phase lag of ¢ with
respect to ¢ implies that an alternating deformation of the tire takes place.

SIMILARITY RULES FOR TESTING SMALL SCALE MODEL TIRES

The equations governing the dynamic performance of tires that have been derived
above, may be written in dimensionless farm. As a result of this, certain dimensionless
numbers are recognized. These should he kept constant in order to ensure similarity
between real and experimental situations,

For a small seale tire model for which geometrical similurity is to be preserved
(including that of the contact zone), the ratios between various lengths must remain
unchanged. If we are dealing with stiffness parameters of the mathematical tive model
in the case where they almost exclusively depend on the inflation pressure, p;, the
ratio between these parameters will hardly be effected by the geometrical scaling. If
pi is not mainly responsible for the stiffness, the ratio of material elastic moduli and
inflation pressure should be kept constant.

In addition, we have the following numbers, which ensure kinematic and dynamic
similarity, respeciively:

Kinematic Conditon:

wr
—— = constant {33)
v
Dynamic Condition:
252
——mg—l—o— = gonstant ’ {(34)
1

where p denotes the mass density of the tire. The kinematic condition simply states
that the wavelength of the path on the road must be scaled down at the same rate as
each other length parameter. The dynamic condition implies that the excitation
frequency must be regarded in terms of a natural frequency of tire and model, At
fixed p/p;, a reduction of radius r would require an increase in excitation frequency w
while the speed V should remain unchanged. If p; can be reduced without seriously
violating the stiffness similarity condition, V and @ may be kept in an acceptable
operating range.
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QUASLSTATIC CYCLIC BEHAVIOR ON
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possibly a coefficient of friction, u, arises which depends upon the orientation of the
tread element relative to the road surface. '

The orientation is directly related to the lateral deformation of the tire and,
consequently, to the corering forec Fy. For the sake of simplicity, we have chosen a
function (of speed) for the coefficient of friction which abru
alternative representation when a critic

(see Fig. 10).

ptly changes to an
al value of the cornering force Fy erit 15 passed

.T%%Mﬁ%@@ﬁ& zf%me%mmﬂ
e ——

H F;>F§crit H <K

Y 7 Yerit
| DRY
4 “Q\ 4 ! CONTACT
DRY #
2{ CONTACT 51 :
' ) R
) WET
CONTACT
oL—— —— , .
2m/s A 2m/s Vg

Fig. 10. Two different hypothetical wet friction functions (friction coeffi
Validity depends on orientation of tread element with respect to road surface,

cient vs sliding speed).
Mathematically, we take the following sim

plified friction functions (of sliding
speed Vg for the two ranges of the side force,

H=AgVy i Vo (V, (40)
=g — BSVS lf VS)VSQ

with parameters different for cach of the distinct force ranges.
The friction properties as postulated will be applied in connection with a

one-dimensional model of tire latera) elasticity represented by a Green’s or influence
function G (£x). A lateral concentrated load acts at coordinate x and results in a

- lateral deformation measured at coordinate £ (see Fig. 11).
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Fig. 11. Tire shear force model.

The lateral deformation, v, which is the resull of a lateral foree per unit length, qy,
continuously distributed over the contact length (2a), is found by means of the
integral:

wE) = faas (£.%) qy (x) dx. , (41)

The Green’s function may be ohtained using the method of Savkoor (6). We shall
assume a Green’s function which is a symunetrical function of x - & and which is

- approximated by the first two terms of the polynomial expansion of this symmelrical

function:
GEx)=h+g(x—§2. (42)

This approximation entails that the shape of the lateral distortion of the contact
line, v (£), becomes parabolic as well, irrespective of friction functions and vertical
pressure distribution:

v

v=ag +ard +agfl, 43
)

To simplify the caleulations, a uniform pressure distribution, q, = qq, is chosen.
The latera) shear force per unit length reads:

Gy =H4o- (44)
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In the contact zone, two ranges may be distinguished. In the front portion, the
speed of sliding is small and does not exceed the value Vyq. In the trailing range, the
sliding speeds exceed this critical value, The point of contact where transition from
one range into the other takes place, is located at coordinate xq.

The sliding speed Vg depends on both the slip angle «, and the gradient of the
lateral distortion, v:

Vo=V (sina+avieg) - (45}

With the use of the foregoing expressions, the integral equation (41) assumes the
form (for small ¢):

ao +ajé +agfl =

qof_:" {h+ g (—52Hpo ~ BV (@ + a, + 20,%)} dx (16)

a
+ (.{O_j.
Xa

th+g (x=£)2} AV (@ +ap + 2a, x) dx

0 .

(Nm} |
~20
M

Fig. 12, Caleulated side foree characteristic showing jump to lfower branch for a particular
combination of high speed and slip angle,
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BEquating the cocfficients of canal povers of ¢ in the feft and vght member of this

equation, we oblain expressions for the unknown guantibics 250 4 anndd a4,

Once the distortion is known, side foree and aligning lorque may be compuiod:

. & &
Fy :[ gydx, M, f qy % idx (47
- -l

The critice! value of the side force ¥y e determinez which portions of the
v I

friction-speed characleristies (which were caleulaiod with both possibie {friction

funciions) are valid. A jump from the upper branch to the lower one will vecur when

Fy drops below Fy g

Fig. 12 shows the loop which occurs at a speed of 20 my/s with a hypothetical tire
and {riction modd configuration with parameters:
a=0.1m,g=—0.000125 1/Nm, qo = 20,000 N/m, Fy» Fy crie: #o = 0.6, Ve =2
m/s, Ag = 0.25 s/m, Bs = 0.05 s/m, Fy « Fyerie: #o = 0.2, Vg = 1 m/s, Ag = 0.25 8/m,
Bg = 0.005 /m.

At the fower speed of 16 m/s, a loop iz not established for the a amplitude
considered. This agrees gualitatively with experimental resulis (5).
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DISCUSSION

Clark

We have a few minutes set aside for questions.
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